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Abstract

Large economic and financial panels often contain time series that influence the entire
cross-section. We name such series granular. In this paper we introduce a panel data
model that allows to formalize the notion of granular time series. We then propose a
methodology, which is inspired by the network literature in statistics and econometrics,
to detect the set of granulars when such set is unknown. The influence of the i-th series
in the panel is measured by the norm of the i-th column of the inverse covariance matrix.
We show that a detection procedure based on the column norms allows to consistently
select granular series when the cross-section and time series dimensions are sufficiently
large. Moreover, the asymptotic distribution of the column norms is derived in order to
construct confidence intervals and carry out hypothesis testing. Importantly, we show
that the methodology allows to consistently detect granulars also when the series in the
panel are influenced by common factors. A simulation study shows that the proposed
procedures perform satisfactorily in finite samples. We illustrate the methodology with
applications in macroeconomics and finance.

JEL classification: C32, C43.
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1 Introduction

Traditionally, theoretical models in economics and finance assume that in large systems the

influence of individual entities is negligible. This view has recently been challenged by a num-

ber of influential contributions, inter alia, Gabaix (2011), Acemoglu, Carvalho, Ozdaglar and

Tahbaz-Salehi (2012) and Acemoglu, Ozdaglar and Tahbaz-Salehi (2015). The main theme

of this strand of the literature is that entity specific shocks – through different mechanisms

– impact the entire system. This is called by Gabaix (2011) the granular hypothesis. These

models have been applied to explain aggregate fluctuations in macroeconomics and financial

stability in finance.

One of the main hurdles in bringing these theories to the data is that in large macroeco-

nomic or financial systems it is often the case that the set of granular entities is unknown.

It is natural to ask if it is possible to introduce a methodology to recover the set of granular

entities from the data. In this paper we tackle this challenge by (i) introducing a reduced

form model that allows us to formalize the granular detection problem for a panel of station-

ary time series and (ii) developing a methodology to detect the set of granular series from

the data when such set is unknown1.

We begin by introducing a model for a panel of time series that formalizes the notion of

granularity used in this paper. We assume that the panel is partitioned into a (finite) set

of series labeled as granular and a remaining set of non-granular series. The granular series

coincide with their respective idiosyncratic shocks, which we call granular shocks. Each non-

granular series is modeled as a linear combination of the granular shocks and an idiosyncratic

non-granular shock. We work under the assumption that the researcher does not observe

whether a given series belongs to the set of granulars.

Our granular detection methodology is based on the properties of the inverse covariance

1Our work is complementary to the large macroeconomic literature that uses input-output tables, or other
criteria such as firm size, to determine whether a certain series is granular, see among others Gabaix (2011),
Foerster, Sarte and Watson (2011), Acemoglu et al. (2012), Di Giovanni and Levchenko (2012), Carvalho
and Gabaix (2013), Di Giovanni, Levchenko and Mejean (2014), Bernard, Jensen, Redding and Schott (2016)
and Gaubert and Itskhoki (2016). Instead, we develop methodology that classifies a series as granular on
the basis of the properties of the covariance matrix of the panel.
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matrix of the panel, hereafter concentration matrix, and is motivated by the literature on

graphical and network models in statistics (see, among others, Lauritzen (1996), Meinshausen

and Bühlmann (2006), Peng, Wang, Zhou and Zhu (2009), Pourahmadi (2013, Chapter 5)).

As it is well known in this literature, the concentration matrix embeds the partial dependence

structure of the panel: Series i and j are partially uncorrelated given the remaining ones if

and only if the pi, jq element of the concentration matrix is zero. This motivates us to use

as a natural measure of the influence of series i in the panel the norm of the i-th column

(or row) of the concentration matrix: Series that influence the entire cross-section ought to

have a larger column norm (or row) than those series that influence a small part of the panel

only.

We develop a granular detection methodology based on the column norms of the con-

centration matrix. We show that under appropriate identification assumptions the column

norms of the population concentration matrix allow to detect the granular series in the panel.

More precisely, we establish that the column norms corresponding to the granular series are

larger than the non-granular ones. This implies that ranking series in the panel according to

the value of the column norm ranks the granular series higher than the non-granular ones.

Next we show that the ratio among subsequent ordered column norms is maximized when

comparing the column norms of the last granular with the first non-granular series. This

implies that we can identify the number of granular series as the index that maximizes the

sequential column norm ratio. This criterion is analogous to the eigenvalue ratio criterion

proposed by Ahn and Horenstein (2013) for the selection of the number of factors.

In large panels of time series common factors typically explain a large proportion of total

variability. See for instance the research by Foerster et al. (2011), Long and Plosser (1987)

and Forni and Reichlin (1998), for earlier work on the trade-off between idiosyncratic and

aggregate shocks in macroeconomics. To this extent, we consider an extension of the model

in which the series in the panel are additionally influenced by a set of common factors. We

show that, under appropriate assumptions, the column norms of the concentration matrix

maintain their detection properties in this setting. Importantly, the results imply that in
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order to detect granulars the researcher does not need to know the number of common

factors.

We operationalize our identification results by estimating the column norms of the con-

centration matrix using the sample covariance matrix of the panel. We show that the column

norms of the inverse sample covariance matrix consistently estimate their population analog

when the cross-sectional dimension and the number of time series observations are large.

This result allows us to establish that our column norm estimator leads to consistent rank-

ing and selection of the granular series. Our estimation results rely on distributional and

dependence assumptions made in the literature on large dimensional covariance estimation,

see for example Fan, Liao and Mincheva (2011).

We derive the asymptotic distribution of the column norms. For this we consider meth-

ods used in the literature on many weak instruments, see for example Hausman, Newey,

Woutersen, Chao and Swanson (2012). This allows us to construct confidence intervals for

the column norms of the concentration matrix. Moreover, we propose a test for the null-

hypothesis of equality between two column norms that can be used to assess whether two

series exert the same influence on the panel. See Pesaran and Yamagata (2012) and Fan,

Liao and Yao (2015) for other recent examples of related high dimensional tests.

Finally, we address the estimation of the granular panel model. In order estimate the

model with common factors, knowledge of the number of factors is required. To this extent

we also show that when the number of factors is unknown appropriate modifications of

existing methods for factor selection introduced in the literature (e.g. Onatski (2010)) can

be applied. We then cast the model in state space form and estimate the model parameters

using standard Kalman filter techniques, see Durbin and Koopman (2012). The estimated

granular model can be used, for instance, to study the economic importance of the granular

shocks using impulse response analysis and variance decompositions.

A simulation study is carried out to assess the performance of our methodology in finite

samples. In the study we simulate a granular model with common factors and then use

our granular detection methodology to recover the granular series. Results show that the
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granular detection methodology procedures performs satisfactorily in finite samples when

the strength of the granulars is sufficiently large. Further, we show that our methodology

compares favorably to detection methods that are based on principal components analysis,

see Stock and Watson (2002a), Bai and Ng (2006) and Parker and Sul (2016).

We apply our methodology in two empirical studies. First, we consider detecting granular

series in a large panel of industrial production series that was previously considered in

Foerster et al. (2011). In the second study, we use our framework to detect granulars in a

panel of volatility measures of large US financial firms during the 2007–2009 Great Financial

Crisis. We introduce the empirical studies in more detail in the next section.

The remainder of this paper is organized as follows. Section 2 presents the granular panel

model analyzed in this work and formalizes the granular detection problem. This section

also discusses applications of this specification in macroeconomics and finance. Section 3

introduces our granular detection methodology and it establishes its large sample properties.

Section 4 compares our methodology to alternative methods based on principal components

analysis and maximum likelihood. Section 5 discusses how to carry out inference on the

granular panel model. Section 6 carries out a simulation study to assess the finite sample

performance of the proposed methodology. Section 7 presents the results of two empirical

applications of our methodology. Concluding remarks follow in Section 8.

2 The granular detection problem

In this section we formalize the granular detection problem and discuss its application for

empirical studies in economics and finance. Let yt be an n-dimensional time series observed

from period t “ 1 to T . We use yi,t to denote i-th component of yt and yi:j,t with i ă j to

denote the pj ´ i ` 1q-dimensional time series containing the i-th to j-th components of yt.

We assume that there are k (fixed) time series whose idiosyncratic shocks gt influence the

entire panel2. We label these time series as granular and the shocks gt as granular shocks.

2It is important to emphasize that in this work the term shock refers to reduced form innovations that
may have structural interpretation depending on further identification restrictions.
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For simplicity and without loss of generality we assume that the granular series are the first k

series in the panel. The other n´k time series are the non-granular series whose idiosyncratic

shocks are denoted by �t. All series in the panel are influenced by a set of r common shocks,

or factors, ft. The granular panel data model with common factors is defined as

y1:k,t “ Λ1ft ` gt,

yk`1:n,t “ Λ2ft ` βgt ` �t,
(1)

where β is the pn´kqˆk granular loading matrix and Λ1 and Λ2 are the kˆr and pn´kqˆr

loading matrices for the common factors. Precise assumptions on the model are spelled out

in the following sections.

In this paper we work under the assumption that the data is generated according to

model (1) and that the researcher does not know (i) which series are granular and (ii) the

number of granular series k.3 Our objective is to introduce a methodology that allows to

consistently recover this information from the data. We point out here that in our framework

the researcher does not need to know the number of common factors r in order to detect

granular series. However, in order to carry out inference on the model knowledge of r is

required. Existing methods for factor selection introduced in the literature (e.g. Onatski

(2010)) may be applied for this task.

It is important to clarify that while model (1) has a factor model representation the

methodology that we introduce in this paper is different from the standard techniques that

are adopted in the factor model literature, like maximum likelihood and principal compo-

nents. Specifically, our detection strategy is based on the partial correlation properties of

the panel and in Section 4 we compare our methodology to the more standard methods.

We discuss two leading examples that illustrate how our framework can be used to for-

malize different problems in macroeconomics and finance. We return to these examples in

the empirical study.

3We notice that if the set of granular series is known, then model (1) is equivalent to a factor model with
a specific identification restriction, see Bai and Li (2012, Section 4 and Table 1) for a detailed overview.
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2.1 Granular sectors in industrial production

The industrial production index in the United States is constructed as a weighted average

of production indices across many sectors. Yet the aggregate volatility of the index is large.

This implies that much of the variability in the index does not average out across different

sectors.

Two leading explanations for this phenomenon have been proposed. First, aggregate

shocks may exist that influence many sectors at the same time, see Foerster et al. (2011).

Examples include, monetary policy shocks, exchange rate shocks and technology shocks.

Second, sector specific idiosyncratic shocks may affect a large number of other sectors. This

may be a consequence of the interconnectedness in the production network, as in Acemoglu

et al. (2012). In reality, it is reasonable to assume that a mixture of both aggregate and

idiosyncratic shocks influence aggregate volatility.

Model (1) can disentangle both explanations. When we define yt as the vector of sector

specific industrial production outcomes, model (1) implies that aggregate volatility is deter-

mined by the k granular shocks gt and the r aggregate shocks ft. Both have influence over

the entire panel. Our methodology may be used to determine which sectors are granular,

how many sectors are granular and how many common factors exist. Subsequently it is

possible to investigate the importance of each component in explaining aggregate volatility.

2.2 Granular institutions in the financial system

One of the lessons from the financial crisis is that the distress of few yet highly influential

financial firms may impair the entire system. The model of Acemoglu et al. (2015) formalizes

this insight and shows that a highly interconnected financial system may be vulnerable to

the idiosyncratic shocks of the most interconnected institutions.

These ideas have motivated a large literature that aims at detecting and ranking institu-

tions in the financial system according to their “systemicness”, see for instance Adrian and

Brunnermeier (2016) and Brownlees and Engle (2016). A number of influential contributions
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have proposed to measure systemic risk using network models like in Billio, Getmansky, Lo

and Pellizzon (2012) and Diebold and Yılmaz (2014). Broadly speaking, these papers mea-

sure how systemic an institution is on the basis of the number and magnitude of spillovers

effects of that institution on the rest of the financial system. Despite the intuitive appeal

of these proposals, these papers do not introduce a model that precisely defines when an

institutions is indeed systemic, and, consequently, they do not establish the properties of

their ranking/selection procedures.

We can cast the problem of detecting systemic institutions as yet another instance of a

granular detection problem. Following, Diebold and Yılmaz (2014) we may consider a panel

of volatility measure for a set of large US financial institutions. We assume the panel is

generated by model (1) and the methodology introduced in this work may be used detect

granular/systemic institutions while controlling for market risk, and other economy wide

sources of risk, through the common factors.

3 Methodology

3.1 Granular panel model

Before considering the complete granular panel specification of (1) we first outline our

methodology for a simplified version of the model where there are no common factors. More

precisely, we consider the model

y1:k,t “ gt,

yk`1:n,t “ βgt ` �t,
(2)

where y1:k,t denotes the k granular series, yk`1:n,t denotes the n´ k non-granular series, gt is

the k ˆ 1 vector of granular shocks, β is the pn ´ kq ˆ k granular loading matrix and �t is

the pn ´ kq ˆ 1 vector of non-granular shocks.

We propose a granular detection strategy that is based on the properties of the con-
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centration matrix of the panel. It is straightforward to check that the covariance matrix

Σ “ Varpytq and the concentration matrix K “ Σ´1 of the panel are given by

Σ “

»
—–

Σg Σgβ
1

βΣg βΣgβ
1 ` Σ�

fi
ffifl , K “

»
—–

Σ´1
g ` β1Σ´1

� β ´β1Σ´1
�

´Σ´1
� β Σ´1

�

fi
ffifl .

Assume, for simplicity, that the norms of the columns of the β matrix are larger than one and

that Σ� is the identity matrix. Then, it is straightforward to verify that the norms of the first

k columns (or rows) of the concentration matrix are larger than the norms of the last pn´kq
columns (or rows). Thus, the set of granular series can be identified simply by checking

which series are associated with the largest column (or row) norms of the concentration

matrix.

The example above suggest that when the granular loading matrix β is sufficiently large

relative to the covariance matrix of the non-granular shocks Σ� then the column (or row)

norms of the concentration matrix K allows to identify the granular series. This motivates

us to base our granular detection methodology on the column norms of the concentration

matrix, that is

}Ki} for i “ 1, . . . , n, (3)

where Ki denotes the i-th column of K.45

Our detection strategy has a natural interpretation in terms of a partial correlation net-

work model, e.g. Pourahmadi (2013, Chapter 5). The partial correlation network represen-

tation of the panel consists of a graph defined over n vertices where each series corresponds

to a vertex and vertices i and j are connected by an edge if i and j are correlated given

the remaining series in the panel. The concentration matrix embeds the partial dependence

structure of the panel: Series i and j are partially uncorrelated if the pi, jq element of the

concentration matrix K is zero.6 Thus, heuristically, granular time series can be though of as

4For an arbitrary vector v “ pv1, . . . , vnq1 the norm }v} is defined as
ařn

i“1 v
2
i .

5We emphasize that the column norm is not the only function of the concentration matrix that can be
used for granular detection.

6More precisely, we have that the partial correlation between series i and j ρij is related to the concen-
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hubs in a partial correlation network representation of the panel and the granular detection

parameter }Ki} can be though as a parameter proportional to the number of connections,

or degree, of each vertex. The top panel of Figure 1 shows the partial correlation network

representation of the panel when n “ 6, g “ 1 and Σ� is a diagonal matrix.

We impose a number of assumptions on the components of model (2) to establish the

identification results.7

Assumption 1. We assume that

(i) Epgtq “ 0 and Epgtg1
tq “ Σg with Σg ą 0.

(ii) Ep�tq “ 0 and Ep�t�1
tq “ Σ� with Σg ą 0.

(iii) Epgt�i,tq “ 0 for all i, t

(iv) We have that β1β Ñ Dβ as n Ñ 8, with µkpDβq ą 0 and µ1pDβq ă 8. Also, there

exists an integer N such that for all n ą N the columns of β, denoted by βi for

i “ 1, . . . , k, satisfy

}βi} ą a
1 ` κβ κ�

where κβ and κ� are, respectively, the condition number of the matrices Dβ and Σ� .

Assumption piq ensures that none of the granular series are linear combinations of each

other. Assumption piiq implies that Σ� is invertible. Assumption piiiq is standard for regres-

sion models, see for example White (2000, Chapter 2). Assumption pivq characterizes the

granular model. First, we require β1β to be non-vanishing when n increases. Second, we

require the norm of the columns of the granular loading matrix to be larger than a threshold

that depends on the degree of collinearity among the non-granular shocks and the granular

tration matrix K through the relation

ρij “ ´ kija
kiikjj

.

7 The following notation is adopted. The k-th largest eigenvalue of an N ˆ N matrix B is denoted as
µkpBq, B ą 0 indicates that B is positive definite and B ľ 0 indicates that B is positive semi-definite.
As a matrix norm we generally adopt the spectral norm that is given for a general M ˆ N matrix A by
}A} “ a

µ1pA1Aq.
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loadings. The threshold is such that, the larger the degree of collinearity the larger the

column norms of the loading matrix. Intuitively, the granular loading matrix determines

the strength of the granular series in model and assumption pivq (and its variants to appear

below) ensures that the granular series are strong enough to be detected. The assumption

implies that the higher the collinearity among the non-granular shocks and the granular load-

ings, the larger the column norms of the granular loading matrix have to be for successful

granular detection.

Assumption 1 is sufficient to rank the granular series higher than the non-granular ones

when ordering series on the basis of the column norms of the concentration matrix of yt.

The following lemma establishes the population ranking result formally.

Lemma 1. Let yt be generated by model (2). Under assumption 1 we have that K exists

and for n ą N we have that

}Ki} ą }Kj} for all i “ 1, . . . , k, and j “ k ` 1, . . . , n.

All proofs are collected in the appendix.

In order to select the number of granular time series in the panel we use a strategy inspired

by eigenvalue ratio criterion proposed by Ahn and Horenstein (2013) for the selection of the

number of factors. Let Kpsq denote the s–th largest column of the concentration matrix.8

Consider the ratio between two subsequent ordered column norms, that is

}Kpsq} { }Kps`1q} , (4)

for s “ 1, ..., n ´ 1. Heuristically, the column norms are large for granular series and small

otherwise. Thus, the ratio ought to be largest when comparing the last column norm corre-

sponding to the granular series with the first column norm corresponding to the non-granular

series. This suggests that the sequential column norm ratio ought to be maximized when s

is equal to k. In order to identify the number of granulars using the sequential column norm

8Columns are ordered on the basis of their norm.
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ratio we need strengthen assumption 1 pivq.

(iv*) We have that β1β Ñ Dβ as n Ñ 8, with µkpDβq ą 0 and µ1pDβq ă 8. Also, there

exists an integer N such that for all n ą N the columns of β, denoted by βi for

i “ 1, . . . , k, satisfy

}βi} ą 2p1 ` κβq3{2κ2
� , (5)

}βi} ą 2
a
1 ` κβκ

2
�

µn´kpΣ�q
µkpΣgq . (6)

We emphasize that in practical situations condition (5) is the one likely to be more

binding. Given the stronger condition on the loading matrix we obtain the following lemma.

Lemma 2. Let yt be generated by model (2) under assumptions 1 (i)-(iii) and (iv*). Then

we have for n ą N , when k ą 0 that

k “ argmax
s“1,...,n´1

}Kpsq} { }Kps`1q}.

Note that jointly lemmas 1 and 2 are sufficient for the identification of the set of granular

series.

Clearly, (4) is not the only function of the concentration matrix K that identifies k.

In fact, several other functions of the elements of the concentration matrix can be used to

identify the number of granular series. For instance, one could consider appropriate variants

of selection criteria introduced in the factor model literature, see, among others, the criteria

in Onatski (2009) and Cavicchioli, Forni, Lippi and Zaffaroni (2016).

We briefly compare our assumptions and identification results to the factor model lit-

erature. Two main differences can be noted in our setup. First, assumptions pivq/piv˚q
reflect that the granular loadings are not orthogonal to each other. Second, we do not rely

on assuming that the norm of the loadings matrix is proportional to n, see, among others,

Bai and Ng (2002), Bai (2003), Ahn and Horenstein (2013) and Cavicchioli et al. (2016).

Instead, we impose lower bounds on the norm of the columns of the granular loading matrix
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that are sufficient to carry out granular detection. Assuming that the norm of the granular

loading matrix does not grow with n is dictated by empirical realism.9 As we document in

the empirical application, while there is indeed evidence of series that have an important in-

fluence over the entire panel these series typically do not explain an overall variance fraction

that justifies that their importance is proportional to n. Last, we point out that assumptions

pivq/piv˚q are comparable to weak factor assumptions considered in Onatski (2009), Onatski

(2010) and Onatski (2012). See also Pesaran (2012) and Chudik, Pesaran and Tosetti (2011)

for more discussion on the distinction between weak and strong factors.

3.2 Granular panel model with common factors

We now consider the general version of granular panel data model (2) in which the series are

influenced by a set of common factors. The complete granular panel data model is given by

y1:k,t “ Λ1ft ` gt

yk`1:n,t “ Λ2ft ` βgt ` �t,
(7)

where ft is the r ˆ 1 vector of common dynamic factors and Λ1 and Λ2 are the k ˆ r and

pn´ kq ˆ r loadings matrices. All other components are the same as in the previous section.

To identify the granular series in this setting we make the following additional assumptions.

Assumption 2. We assume that

(i) Epftq “ 0 and Epftf 1
tq “ Ir.

(ii) Epftg1
tq “ Σfg for all t and Σg ´ ΣgfΣfg ą 0, where Σgf “ Σ1

fg.

(iii) Epft�i,tq “ 0 for all i, t.

(iv) Let Λ “ pΛ1
1,Λ

1
2q1 and Λ1Λ Ñ Dλ as n Ñ 8, with µrpDλq ą 0 and µ1pDλq ă 8.

9If there would be strong granulars, explaining the common factors in factors models would not be so
hard.
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Assumption piq is a standard normalization assumption for factor models, see for example

Doz, Giannone and Reichlin (2012). Assumption piiq allows for contemporaneous correlation

between the factors and the granular shocks. The correlation is restricted by requiring the

Schur complement Σg ´ ΣgfΣfg to be positive definite. Assumptions Epftf 1
tq “ Ir and

Σg ´ ΣgfΣfg ą 0 together are the same as the requirement that the variance of ft and

gt is positive definite, see Horn and Johnson (2013, pp. 25). Notice that this assumption

is weaker when compared to the literature on network models with common factors which

typically assumes no correlation between the common factors and the network. This allows,

importantly, for feedback effects between common factors and granular series. Assumption

piiiq imposes that the factors, similar as the granular shocks, are independent from the non-

granular shocks. Assumption pivq imposes the factors are non-vanishing when n increases.

Overall, this set of additional assumptions for the factors corresponds to the weak factor

model assumptions considered in Onatski (2009) and Onatski (2012).

We provide lemmas that extend the identification results established in the previous

section for the baseline granular model to the case of a granular model with common factors.

Lemma 3. Let yt be generated by model (7) under assumptions 1 (i)–(iv) and 2 (i)–(iv).

Then K “ Σ´1, where Σ “ Varpytq, exists and we have for n ą N that

}Ki} ą }Kj} for all i “ 1, . . . , k, and j “ k ` 1, . . . , n .

Lemma 4. Let yt be generated by model (7) under assumptions 1 (i)–(iii) and (iv*) and 2

(i)–(iv). Then we have for for n ą N and k ą 0 that

k “ argmax
s“1,...,n´1

}Kpsq} { }Kps`1q} .

It is important to emphasize that in our framework the presence of factors does not

alter the detection properties of the column norms of the concentration matrix. It is also

important to emphasize that in population in order to carry out granular detection it is not
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required to know the number of factors r.

3.3 Estimation

We estimate the column norms of the concentration matrix }Ki} for each of the n series in

the panel using a sample of T observations from the process yt. Let Σ̂ denote the sample

covariance matrix T´1
řT

t“1 yty
1
t and let K̂ denote the sample concentration matrix Σ̂´1. A

natural estimator of the granular statistic of series i is the norm of the i-th column of the

sample concentration matrix, that is }K̂i}.
We need to impose appropriate dependence and distributional assumptions on yt in order

to establish the large sample properties of our estimator. Let F0´8 and F8
s denote the σ-

algebras generated by tys : ´8 ď s ď 0u and tys : t ď s ď 8u, respectively. We define the

α-mixing coefficients of the yt process as

αptq “ sup
APF0´8,BPF8

t

|P pAqP pBq ´ P pABq| .

We make the following assumptions.

Assumption 3. Let yt be an n-dimensional time series process.

(i) tytu is stationary and ergodic.

(ii) tytu is α-mixing. There exists positive constants γ1 and C1 such that for all positive

integers t we have that the α mixing coefficients satisfy

αptq ď expp´C1t
´γ1q .

(iii) There exists positive constants γ2 and C2 such that for any s ą 0 and any i “ 1, ..., n

Prp|yi,t| ą sq ď expp1 ´ ps{C2qγ2q .

(iv) Let γ be defined as γ´1 “ γ´1
1 ` 2γ´1

2 . Then, γ ă 1.

15



These are similar to the dependence and distributional assumptions made in Fan et al.

(2011). In particular, assumption 3 piiq states that yt is strongly mixing and assumption

3 piiiq states that the marginal distributions of the components of yt have generalized-

exponential tails. The parameter γ defined in assumption 3 pivq is a key quantity in this

work and measures the degree of dependence and tail thickness of the data: The smaller the

parameter the more dependent and thick tailed the data are.

These assumptions allow to apply a Bernstein-type inequality for mixing processes derived

in Merlevede, Peligrad and Rio (2011), which is one of the main tools needed to establish

the results of this section. Notice that we directly impose the assumptions on the observed

series yt instead of on ft, gt and �t separately. This is only for convenience and the results of

this section may also be obtained by assuming that ft, gt and �t satisfy assumption 3. We

establish the following result concerning the sample covariance matrix.

Theorem 1. Let yt be generated by model (7) under assumptions 2 and assumption 3.

Suppose n Ñ 8 and T “ Opn2{γ´1q. Then, for any η ą 0 there exists positive constants

C1, . . . , C5 such that

(i) µnpΣq ´ C1

a
n
T

ď µnpΣ̂q ď µ1pΣ̂q ď µ1pΣq ` C2

a
n
T

(ii)
›››Σ̂ ´ Σ

››› ď C3

a
n
T

(iii)
›››K̂ ´ K

››› ď C4

a
n
T

(iv) }K̂i} ´ }Ki} ď C5

a
n
T

at least with probability 1 ´ Opn´ηq.

Theorem 1 piq establishes a Bai-Yin-type law (Bai and Yin (1993)) for the largest

and smallest eigenvalues of the sample covariance matrix of strongly mixing data with

generalized-exponential tails. The theorem states that the eigenvalues of the sample co-

variance matrix are bounded away from zero and infinity when n and T are large. Note that

recent contributions in the factor modeling literature often circumvent this step and impose
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this as an additional assumption, see for example Ahn and Horenstein (2013) and Moon

and Weidner (2015). The proof of the theorem follows the arguments laid out in Vershynin

(2012), with appropriate modifications for the present setting. Let us emphasize that the

theorem extends the results of Vershynin (2012) for a set of assumptions that are more con-

venient for economic and financial applications. Theorem 1 piq facilitates the derivation of

the subsequent parts piiq to pivq.
We use Theorem 1 to establish two important results concerning the selection properties

of the granular statistic }K̂i}. First, in light of Lemma 1, it is natural to rank the series in

the panel on the basis of the value of the granular statistic }K̂i}. Define the event

ER “
!

}K̂i} ą }K̂j} for all i “ 1, ..., k and j “ k ` 1, ..., n
)
, (8)

that is the event that the granular statistics of the granular series are larger than the ones

of the non-granular series. Then, the following corollary establishes that when n and T are

large the probability of the event ER approaches one.

Corollary 1. Let yt be generated by model (2) under assumptions 1 and 3. Consider the

event ER defined in equation (8). Suppose that n Ñ 8 and T “ Opn2{γ´1q. Then, for any

η ą 0

PpERq ě 1 ´ Opn´ηq .

In other words, the corollary shows that the granular statistic consistently ranks the

granular series ahead of the non-granular ones. Second, in light of Lemma 2, it is natural to

estimate the number of granular series by

k̂ “ arg max
s“1,...,n´1

}K̂psq}{}K̂ps`1q} , (9)

where K̂psq denotes the s–th sample concentration matrix column when the columns are
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ordered on the basis of their norm in decreasing order. Define the event

ES “
!
k̂ “ k

)
, (10)

that is the event that the correct numbers of granular series are selected. The following

corollary establishes that when n and T are large the probability of the event ES approaches

one.

Corollary 2. Let yt be generated by model (2) under assumptions 1 (i)-(iii) and (iv*) and

3. Consider the event ES defined in equation (10). Suppose that n Ñ 8 and T “ Opn2{γ´1q.
Then, for any η ą 0

PpESq ě 1 ´ Opn´ηq .

A number of additional comments are in order. It may be possible to obtain better

convergence rates for the granular statistic by employing some appropriate regularized co-

variance estimator. However, this typically requires making additional assumptions on the

model. It is important to highlight that the results of this section can also be obtained

by making assumptions similar to those in Stock and Watson (2002a), Bai and Ng (2002)

and Doz et al. (2012). Such results rely on weaker distributional assumptions than the ones

spelled out in assumption 3. However they rely on stronger dependence assumptions.

3.4 Asymptotic distribution

We derive the limiting distribution granular statistics }K̂i} in order to construct confidence

intervals and to carry hypothesis testing. To this extent it is useful to derive the regression

representation of the series in the panel. For each series yi t in the panel we have that

yi,t “ y1
´i,tγi ` ui,t ,

where y´i,t “ py1,t, . . . , yi´1,t, yi`1,t, . . . , yn,tq1 and Varpui,tq “ σ2
ui
. This follows from the

regression representation for the columns of the inverse covariance matrix, see Pourahmadi
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(2013, Section 5.2) and the discussion in the Appendix A.4.10. Then, column norm can be

written as

}Ki} “
a
1 ` γ1

iγi

σ2
ui

.

The sample column norm is given by

}K̂i} “
a
1 ` γ̂1

iγ̂i
1
T
û1
i,.ûi,.

,

where γ̂i “ pY 1́
iY´iq´1Y 1́

iyi,. with yi,. “ pyi,1, . . . , yi,T q1, Y´i “ py1,., . . . , yi´1,., yi`1,., . . . , yn,.q
and ûi,. “ yi,. ´ Y´iγ̂i. We notice that }K̂i} is a function of γ̂1

iγ̂i and
1
T
û1
i,.ûi,.. We derive

the joint limiting of these two quadratic forms and an application of the delta method sub-

sequently gives the distribution of }K̂i}. The joint distribution is derived using comparable

techniques as developed in the literature on many weak instruments and many regressors,

e.g. Hausman et al. (2012), Chao, Swanson, Hausman, Newey and Woutersen (2012), Chao,

Hausman, Newey, Swanson and Woutersen (2014), Cattaneo, Jansson and Newey (2017a)

and Cattaneo, Jansson and Newey (2017b). See also Kelejian and Prucha (2001) and Kele-

jian and Prucha (2010) for related approaches. To facilitate the derivation we make an

additional technical assumption.

Assumption 4. For each auxiliary regression representation, yi,. “ Y´iγi ` ui,. the dis-

turbances can be written as ui,. “ Σ
1{2
ui ζi,., with T ˆ T lower triangular matrix Σ

1{2
ui and

Varpui,.|Y´iq “ Σ
1{2
ui Σ

1{21
ui “ Σui

. Further, we assume that there exist positive constants cui,u,

cui,l and cγ, such that

(i) lim sup
TÑ8

}Σ1{2
ui }1 ă cui,u and lim sup

TÑ8
}Σ´1{2

ui }1 ă cui,l

(ii) tζi,tu is independent and identically distributed conditional on Y´i.

(iii) lim sup
nÑ8

ř
j‰i |γi,j| ă cγ

10This also follows directly from the inverse formula for block matrices, see Magnus and Neudecker (2007,
page 12).
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Part (i) of this assumption restricts the correlation among the residuals. Part (ii) as-

sumes the existence of an underlying independent process ζi,t and part (iii) ensures that the

coefficients γi remain bounded. The assumptions are more relaxed when compared to other

papers that deal with distributions in high dimensional settings, e.g. Pesaran and Yamagata

(2012) and Fan et al. (2015), and the literature on many weak instruments, e.g. Chao and

Swanson (2005) and Hausman et al. (2012). In these works the disturbances are typically

considered independent, whereas we allow for correlation following the approach of Kelejian

and Prucha (2010).

We obtain the following limiting distribution.

Theorem 2. Let yt be generated by model (2) under identification assumption 1 and sampling

assumptions 3 and 4. We have when n, T Ñ 8 with n{T Ñ c P p0, 1q that

?
T p}K̂i} ´ δKi

q
σKi

dÑ Np0, 1q, where

δKi
“

d
1

δ2ui

` δγi
δ2ui

, σ2
Ki

“
«

1

2δui

a
1 ` δγi

,´
a
1 ` δγi
δ2ui

ff
ΣVi

«
1

2δui

a
1 ` δγi

,´
a
1 ` δγi
δ2ui

ff1

and δγi “ γ1
iγi ` 1

T

řT
t“1 Ai,1,tt, δui

“ 1
T

řT
t“1 Ai,2,tt and ΣVi

is 2ˆ 2 symmetric with elements

ΣVi,11 “ 2
T

řT
t“1

řT
s“1 A

2
i,1,ts ` 1

T

řT
t“1 b

2
i,t ` 1

T

řT
t“1 A

2
i,1,ttpξp4q

i,t ´ 3q ` 2
T

řT
t“1 Ai,1,ttbi,tξ

p3q
i,t

ΣVi,12 “ 2
T

řT
t“1

řT
s“1 Ai,1,tsAi,2,ts ` 1

T

řT
t“1 Ai,1,ttAi,2,ttpξp4q

i,t ´ 3q ` 2
T

řT
t“1 Ai,2,ttbi,tξ

p3q
i,t

ΣVi,22 “ 2
T

řT
t“1

řT
s“1 A

2
i,2,ts ` 1

T

řT
t“1 A

2
i,2,ttpξp4q

i,t ´ 3q,

with ξ
p3q
i,t “ E

`
ζ3i,t|Y´i

˘
, ξ

p4q
i,t “ E

`
ζ4i,t|Y´i

˘
and

Ai,1 “ 1
T
Σ

1{21
ui Y´ip 1

T
Y 1́

iY´iq´2Y 1́
iΣ

1{2
ui

Ai,2 “ Σ
1{21
ui pIT ´ Y´ipY 1́

iY´iq´1Y 1́
iqΣ1{2

ui

bi “ 2Σ
1{21
ui Y´i

`
1
T
Y 1́

iY´i

˘´1
γi.

A number of comments are in order. First, under the null hypothesis H0 : }Ki} “ 0 the
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distribution of the granular statistics simplifies as then γi “ 0. Hence, one can modify

Theorem 2 by setting bi “ 0 which yields the distribution of T p}K̂i} ´ δKi
q{σKi

under this

null-hypothesis. In this paper we are not explicitly interested in this hypothesis, but we note

that when dropping the ith element from Ki this result can be used to determine whether

series i is partial correlated to any other series.

Second, it is important to emphasize that the limiting distribution does not depend on

the specific structure of the concentration matrix that is imposed by the granular model

(2). The theorem is general in the sense that it applies for all settings where the population

concentration matrix K has bounded eigenvalues and where the observations that are used

to construct the sample concentration matrix satisfy the assumptions 3 and 4.

4 Comparison to other methods

In this section we compare our granular detection methodology with detection methods based

on principal components, see Stock and Watson (2002b), Bai and Ng (2006) and Parker

and Sul (2016), and on maximum likelihood, see Doz et al. (2012), Bai and Li (2015) and

Jungbacker and Koopman (2015). We emphasize that none of these methods are specifically

designed to detect granular series as they are defined in our setting. However, given that

our model has a factor model representation it is not unreasonable to consider such methods

for granular detection. It is important to emphasize that none of the alternative methods

exploit the partial correlation structure that is imposed by the granular model. The next

sections explain in detail strength and weakness of these alternative approaches.

4.1 Principal components based methods

Stock and Watson (2002b), Bai and Ng (2006) and Parker and Sul (2016) propose methods

based on principal components analysis to give meaning to the otherwise hard to interpret

estimates for the common factors. They estimate the factors in an approximate factor model

using principal components and subsequently use regression analysis to find the series that
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correlate most with the factors. Upon first sight, it seems that these methods could be

adopted to detect granular series as well and it is true that in some settings these methods

will yield the same set of granular series when compared to detection based on the column

norms. However, there are several important scenarios in which a principal components

based method will not be able to detect the granular series.

First, a conceptual difference is that any principal components based method amounts to

detecting the series that explain the most variance in the panel. This follows as the common

factors from principal components are estimated to maximize the explained variance. Our

definition of granular series, as formulated in assumption 1, does not necessarily imply those

series that explain the most variance. This implies that in noisy data panels detection based

on principal components will perform less well.

A simple example of this is the following. Consider the baseline granular model (2) with

k “ 1 and the following parametrization

y1,t “ gt Varpgtq “ 1

y2:n,t “ δ?
n´1

ιn´1gt ` �t Varp�tq “ In´1c,

where ιn´1 is a vector of ones of length n ´ 1 and δ and c are constants. For this model

the conditioning number of Σ� is given by κ� “ 1 and the identification assumption 1-(iv) is

satisfied when δ ą ?
2. In this setting the granular series will be detected using the column

norm statistic whenever δ ą ?
2.

In contrast, the detection power of the principal components method depends on the

value of c. When c is large the first principal component will not correlate with the granular

series. Moreover, estimators for the number of factors, such as those developed in Bai and

Ng (2002) and Ahn and Horenstein (2013) will not detect any factors.

This problem becomes more prominent when common factors ft are also present in the

model. When these explain a lot of variance the principal components method primarily

detects these and the subsequent regressions, that aim to find which series correlate most

with the estimated factors, will detect also those series that load on the common factors.
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Second, recovering the number of granular series is difficult using a principal components

based method. To see this consider again the simple example above, but now for the case

where c is small relative to δ. Clearly for n, T Ñ 8 the R2 from the regression of the first

principal component on the first series will tend to one. However, for small c the R2’s from

the other regressions also become arbitrarily close to one. This makes selecting the number

of granular series difficult, because the same principal component can also be generated

by multiple correlated granular series. In particular, a model with two highly correlated

granular shocks will imply that PCA will estimate one common factor and generate the

exactly the same R2’s sequence. The column norm statistics are able to distinguish between

these two scenarios with ease.

These observations are verified in the Monte Carlo study in the next section. There

we confirm that the detection power of the principal components based methods does not

perform satisfactorily under weak factor settings and when there are additional common

factors in the model. Also, in the empirical section we show that documented rankings of

the granular series are vastly different.

4.2 Maximum likelihood based methods

A relatively straightforward method for performing granular detection would be to estimate

the granular model for different orderings of the variables in yt and then comparing the

marginal likelihoods, or some other statistic, of the different models. To outline the practical

difficulty with this approach consider the simplified model without factors 2 for a given k.

This would involve estimating
`
n
k

˘
possible models. For k “ 1 or k “ 2 this approach is quite

feasible. But for n “ 100 and k “ 3 this already involves estimating 161700 different models

making this a computationally prohibitive task, see also Elliott, Gargano and Timmermann

(2013). When also allowing for common factors in the model the computational task becomes

even harder as more factors increase the computational difficulty. Potentially smart search

algorithms could be considered but we do not explore this route further.

Alternatively, it is possible to estimate a factor representation of the model without
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imposing identification restrictions on the loading matrix. For example

yt “ Lht ` ζt

where ht “ pf 1
t , g

1
tq1 and fixing the variance of ht to the unit matrix. The difficulty of this

approach lies again in the second step when one needs to figure out which series correspond

with the estimated factors the most. In particular, maximum likelihood will assign positive

variance to the errors ζi,t that correspond to the granular series and the rotation of the

factors is not fixed. This makes the subsequent regressions of the estimated factors on the

individual series unreliable since the factors are estimated based on maximizing the likelihood

of an essentially under-identified model which can yield a very different optimal rotation of

the factors. The same difficulty for detecting the number of granular series as for principal

components applies here as well.

5 Inference on the granular panel model

5.1 Determining the number of common factors

Once the granular series have been identified and tested, we complete the specification of

model (7) by determining the number of common factors. Several estimators and hypothesis

tests have been previously proposed, see Bai and Ng (2002), Onatski (2009), Onatski (2010)

and Ahn and Horenstein (2013) for examples. We build on these estimators.

5.2 Model evaluation and inference

A question of central interest is whether the granular series have economically meaningful

impact. So far our methodology has been predominantly focused on statistical measures

for detecting granular series. In this section we outline how to use knowledge concerning

granular series – and the number of common factors – to asses the economic importance of

the granular series. This requires inference on model (7) and a subsequent discussion on how
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to obtain relevant impulse responses and variance decompositions.

In general, we follow Bernanke, Boivin and Eliasz (2005) and conduct likelihood based

inference on the complete model. Similar as in their factor augmented vector autoregressive

model we assume that the granular shocks and the common factors are modeled by

»
—–

ft

gt

fi
ffifl “

»
—–

Φff,1 Φfg,1

Φgf,1 Φgg,1

fi
ffifl

»
—–

ft´1

gt´1

fi
ffifl ` ¨ ¨ ¨ `

»
—–

Φff,p Φfg,p

Φgf,p Φgg,p

fi
ffifl

»
—–

ft´p

gt´p

fi
ffifl `

»
—–

ηf,t

ηg,t

fi
ffifl , (11)

where the Φ’s are the autoregressive matrices and the η’s are the disturbances for which

we assume pηf,t, ηg,tq1 „ iidp0,Σηq. Following assumption 2 we have that ηf,t and ηg,t can

be arbitrarily correlated among each other and for identification purposes we restrict the

variance of ηf,t to unity, see also Doz et al. (2012).

The state equation (11) combined with the measurement equation (7) implies a linear

state space model in the sense of Durbin and Koopman (2012). The parameters of the

model can be summarized in the vector ψ which includes the loading matrices β and Λ,

and also the parameters of the state equation (11). For the non-granular shocks �t different

assumptions can be made depending on their persistence and their correlation among each

other. See Jungbacker and Koopman (2015) for different possibilities for the error terms

within a likelihood based framework. Once the complete model is specified the parameters

can be estimated by maximum likelihood for which the likelihood can be evaluated using

the Kalman filter and the expectation-maximization algorithm, see Durbin and Koopman

(2012, Chapter 4).

Typically, we estimate a restricted version of what is believed to be the true model as

often the variance of �t is restricted to be diagonal. For parameter consistency in such

settings we appeal to the quasi-maximum likelihood theories that were developed in Doz

et al. (2012), Bai and Li (2012) and Bai and Li (2015). Given the parameter estimates we

can compute impulse responses and variance decompositions similar as in Bernanke et al.

(2005).
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6 Simulation Study

We perform a simulation study to assess the finite sample performance of our proposed

methodology. We evaluate the performance of the detection methods based on the granular

statistic }K̂i} under different data generating processes. The outcome criteria that we are

interested in are as follows. First, we evaluate the fraction of the number of true granular

series that correspond to the k largest granular statistics and the frequency by which we

correctly select the number of granular series. We compare the performance of our granular

statistics to other methods that are based on principal components analysis. Second, we

evaluate the finite sample performance of the asymptotic distribution. This includes an

evaluation of the asymptotic approximation of the granular statistic.

6.1 Simulation design

We generate data panels from the granular panel data model with common factors given in

equation (7). We consider data panels with dimensions n “ 50, 100 and T “ 200, 400. The

number of granular series that we include is equal to k “ 3, 5 and the number of common

factors that we include is equal to r “ 0, 3, 5.

The granular shocks and common factors follow the vector autoregressive process given

in equation (11). We consider a lag lenght of p “ 1. The variance matrix Ση has ones on

the main diagonal and correlation coefficient cη on the off-diagonal elements. We note that

cη captures the contemporaneous correlation among the granular shocks and the common

factor shocks. We vary its value by taking cη “ 0, 0.5. The elements for the diagonal of

Φ1 “ rΦff,1,Φfg,1 : Φgf,1,Φgg,1s are drawn uniformly for each panel over the range (0.5,0.95).

The off-diagonal elements are drawn from Np0, 0.1q. The transformations of Ansley and

Kohn (1986) are applied to ensure that ht admits a stationary vector autoregressive process.

We generate the non-granular idiosyncratic shocks from

et “ Γet´1 ` ηe,t ηe,t „ NID p0, In´k ´ ΓΓ1q ,
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with Γ diagonal with elements Γii „ Up0.5, 0.95q, where Up0.5, 0.95q indicates the uni-

form distribution over the range (0.5,0.95). This ensures that et follows a stationary vector

autoregressive process with variance In´k. From this we generate �t “ Σ
1{2
� et such that

Varp�tq “ Σ�. For the latter we consider (a) diagonal, (b) banded and (c) sparse structures.

For the diagonal structure we have Σ
1{2
�,i,j „ Up0.5, 1.5q for all i “ j and zero else. For the

banded structure we have Σ
1{2
�,i,j „ Up0.5, 1.5q if i “ j, Σ

1{2
�,i,j “ c� with c� “ 0.2 if i ą j and

i´ j ă 10 and zero else. Finally, the sparse structure is given by Σ
1{2
�,i,j „ Up0.5, 1.5q if i “ j,

if i ą j Σ
1{2
�,i,j „ Up´0.5, 0.5q with probability 0.2{r?n ´ k logpn ´ kqs and zero else, and if

i ă j the value is zero. Notice that this implies that for each case Σ
1{2
� is lower triangular

and Σ� “ Σ
1{2
� Σ

1{21
� . The banded structure is similar as in Stock and Watson (2002a) and

Bai and Ng (2002) whereas the sparse structure is similar as considered in Fan et al. (2011).

The strength of the granular shocks is determined by β. We vary the variance of the

granular loadings in order to change the magnitude of their effect. In particular, we have

βi,j „ NIDp0, σ2
b q, where σ2

b “ 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1. The loadings of the common

factors are drawn from a standard normal distribution. For small values of σ2
b this reflect

the situation where the common factors explain more variance in the observations when

compared to the granular shocks. Such settings are argued to be empirically relevant in for

example Foerster et al. (2011).

In total we have six dimensions along which we vary the granular panel data model: 1.

panel dimensions, 2. number of granular, 3. number of factors, 4. effect of the granular, 5.

correlation among the granulars and factors and 6. specification of the non-granular shocks.

For each possible combination across these six dimension we draw S “ 1000 different data

panels. For each panel we rank, select and test the granular series.

6.2 Granular detection results

We begin by studying the finite sample properties of our ranking methods. Corollaries 1

and 2, that are based on the consistency of the column norms, imply that we can correctly

identify the granular series when n and T become large. For each simulated panel we rank
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the series in the panel according to the column norms of the concentration matrix, and then

we select the number of granulars using the column ratio statistic of corollary 2. When

selecting the number of granulars, we set the maximum number of possible granular series

to n{2, see also Ahn and Horenstein (2013).

We summarize the performance of the detection procedure by reporting the average

proportion of correctly ranked granular series and the proportion of correctly selected number

of granulars. Given the large number of simulations considered, we only discuss the case

where the non-granular errors have the banded and sparse designs. These cases are the

most relevant for empirical applications. Only, we only show the case where the correlation

between the granular shocks and the common factors is fixed at cη “ 0.5. Changing this

coefficient has no effect on the detection results for the column norm.

We present the results for average proportion of correctly ranked granular series in Table

1 and the proportions of correctly selected number of granulars in Table 2. The tables reveal

some interesting patterns.

First, the key parameter for which the outcomes fluctuate the most is the magnitude

of the granular loadings as captured by the standard deviation coefficients σ2
b . When this

variance is close to zero this implied that the granular loadings are close to zero and by result

ranking the granulars correctly becomes more challenging. When the variance increases the

percentage of correctly ranked granulars increases rapidly. Notice that when σ2
b “ 0.1,

which still implies that the coefficients are on average local-to-zero for n “ 100 the detection

rate is nearly perfect. Hence for reasonably connected granular series we should expect to

detect them easily. For estimating the correct number of granular series a similar pattern

is detected. However, as obtaining the correct number of granulars requires a stronger

identification condition, see Lemma 2, we see that the percentages are overall lower for this

statistic.

Second, the panel dimensions imply that larger panels n, T improve the detection results.

Both increases in n and T improve the ranking and the estimation of the number of granular

series. We remark here that the case where n « T , which is not covered by our theory,
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produces less good results.

Third, differences between k “ 3 and k “ 5 granular series are small. Also, the perfor-

mance of the methodology is only mildly affected by the numbers of factors in the specifi-

cation. Only, the selection of the number of granular series suffers slightly when including

additional common factors. This confirms the identification results derived in Lemmas 3 and

4.

Clearly, the key parameter of our simulation setting is the standard deviation of granular

standard deviation coefficients σ2
b . We investigate its interaction with the amount of cross-

sectional correlation in the non-granular shocks. These correlations are captured by c� in

our simulation design for banded errors. In Tables 1 and 2 this value was fixed at 0.2 and

we now vary it between 0 and 0.9. The identification Lemmas 1 and 3 suggests that the

interaction between σ2
β and c� is crucial.

Figure 2 reports the plots of the proportion of correctly ranked granulars and the propor-

tion of correct selection of the number of granulars as a function of the granular strength (as

measured by σβ) and the non-granular shocks dependence (as measured by c�). The plots

show that when the degree of dependence among non-granular shocks is weak, our granular

detection methodology performs satisfactorily even when the strength of the granulars is

modest. On the other hand, when the degree of dependence among non-granular shocks is

strong our procedure requires the strength of the granular shocks to be much larger to detect

granulars with sufficiently high probability.

Overall, the simulation study conveys that the granular detection methodology proce-

dures performs satisfactorily in finite samples provided that the strength of the granulars is

sufficiently large.

6.2.1 Comparison to Factor Model Based Methods

In this section we compare the performance of our methods with granular identification

procedures that are based on principal components analysis, see for example Stock and

Watson (2002b), Bai and Ng (2006) and Parker and Sul (2016). The latter methods are
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based on regressing the individual series on the estimated factors from principal components

analysis. First, we consider a straightforward implementation of such method: (i) estimate

the number of factors using Bai and Ng (2002), (ii) regress each time series on the common

factors and (iii) rank according to the R2 of this regression. For estimating the number of

factors we use the IC2 criteria from Bai and Ng (2002) which gave slightly better results

when compared to the eigenvalue ratio estimator from Ahn and Horenstein (2013). Ranking

based on the R2 are commonly reported in the factor model literature (e.g. Stock and

Watson (2002b) and Foerster et al. (2011)) and we emphasize that they are not designed for

granular detection but for interpreting the common factors. Nevertheless, it is interesting to

compare our methodology to this procedure.

In Table 3 we show the ratios between the percentage of correctly ranked granulars

based on the R2’s and the column norm statistic. We find that in all cases the column norm

statistic determines a better ranking when compared to the R2’s. On average – across all

specifications – we find that the column norm ranking method performs 25% better. The

differences are large for small values of σ2
b and tend to zero when the influence of the granular

series becomes larger. This is in line with the theoretical discussion in Section 4 where we

illustrated that the factor based methods become difficult for weak granular series, see also

Onatski (2012).

Second, a potentially more advanced method for detecting granular series based on pca

is proposed in Parker and Sul (2016). As previously discussed, it is important to emphasize

that the Parker and Sul (2016) algorithm is designed for a different problem in comparison

to the one considered here. Nevertheless, the two approaches have some similarities and

it is interesting to analyze the performance of the Parker and Sul (2016) algorithm in the

framework of this paper. To this extent, we apply the Parker and Sul (2016) algorithm to

detect granular series. As far as the implementation of the Parker and Sul (2016) procedure

is concerned, we follow exactly the algorithm described in their paper.
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7 Empirical Applications

7.1 Granular series in US industrial production

We study the presence of granular series in US industrial production, see also Forni and

Reichlin (1998), Foerster et al. (2011), Pesaran and Yang (2016), Siavash (2016) and Atalay

(2017). We consider a panel of sector specific industrial production time series for n “ 138

different sectors in the US economy ranging from 1972 until 200711. Each time series concerns

monthly industrial production growth rates and in total we have T “ 431 time periods. The

panel is standardized such that each series has mean zero and unit variance. The questions

that we aim to answer are: (a) are there granular sectors in US industrial production?, (b)

do the granular sectors significantly predict aggregate industrial production?, (c) how much

variance do the granular sectors explain relative to the common factors? To answer these

questions we apply our granular detection methods.

In Figure 3 we show the ordered column norms }K̂i} of the concentration matrix. In

panel (a) we show all norms together with their 95% confidence bounds. The bounds are

based on the asymptotic approximation given in Theorem 2 and computed using the variance

estimator given in Lemma ??. To improve visibility the largest twenty column norms are

also shown in Panel (c). We find that there are two series that are clearly distinct from the

others: Motor Vehicle Parts and Automobiles and Light Duty Motor Vehicles. Both sectors

fall within the automobile industry which was signaled as a potentially granular industry

during the financial crises by Alan R. Mulally, the chief executive of Ford, see Mulally (2008)

and the discussion in Acemoglu et al. (2012).

The importance of the automobile industry is further amplified in Table 8 where we

provide the details for the series corresponding to the largest ten column norms. We find that

in the top ten; four series are directly related to the automobile industry. Other potentiually

granular sectors that we find are related to aluminum, plastics and paper products. We

emphasize that after the first six or seven sectors the differences in the column norms become

11The data is taken from Mark Watson’s website: https://www.princeton.edu/ mwatson/
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very small.

In panels (b) and (d) of Figure 3 we show the column norm ratios. The estimator k̂,

given in equation 10, indicates that there are two granular series in our panel. We conduct a

hypothesis test to verify that the second and third column norms are significantly distinct,

see section ??. The null hypothesis of equal column norms is rejected with for a test with

level α “ 0.05. A second hypothesis test for the difference between the seventh and eighth

largest column norms could not be rejected.

Next, we determine the number of common factors that remain after taking into account

the granular series. Using the IC2 criteria proposed in Bai and Ng (2002) we find that there

is one common factors left in the panel. This is confirmed by the common factor estimators

proposed in Onatski (2010) and Ahn and Horenstein (2013), see also Foerster et al. (2011)

who find one or two factors for a similar panel.

In summary, our granular detection method and specification tests indicate that a model

with two granular series (Motor Vehicle Parts and Automobiles and Light Duty Motor Ve-

hicles) and one common factor agrees with the data.

7.1.1 Time dependence in granular detection

Next, we consider the stability of the granular detection method for different sampling pe-

riods. In particular, we follow Foerster et al. (2011) and split the sample into two different

periods, 1972-1983 and 1984-2007, and repeat the previous analysis. We note that for the

1972-1983 sampling period our methodology is not very reliable as T “ 143 for this period.

This makes n and T very close and this is not covered by our theory.

In Figure 4 we show the largest ten column norm statistics for both sampling periods.

For the 1972-1983 period we find no significant granular series. The two granular series from

the full sample analysis remain in the top five of series, see Table 8, but the standard errors

are very large and we consider the estimates in general unreliable.

For the 1984-2007 sampling period we find a similar ranking as for the full sample. In

particular, nine of the top ten series are also in the top twenty for the full sample. The top
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five series is practically unchanged. The estimator for k now indicates that there are five

granular series in the model. This confirms the finding in Foerster et al. (2011) who find

that idiosyncratic shocks have become more important in recent years.

7.1.2 Comparison to other methods

We compare our granular detection method to methods based on principal components.

Based on the simulation section we only consider a ranking based on the R2’s of the regression

of the ith series on the principal components. A similar ranking is also presented in Foerster

et al. (2011)12 and we follow their construction by using two principal components.

In Table 9 we show the selected granular series that result from the R2 ranking. We find

a quite different set of granular series.

7.2 Granular Detection in the Financial System

In this application we focus on detecting granulars in a panel of volatility measures of large

US financial institutions. The application is close in spirit to the work of, among others,

Billio et al. (2012) and Diebold and Yılmaz (2014).

We consider a panel of large US financial firms during the 2007-2009 Great Financial

Crisis. The list of companies is in Table 4. The sample roughly matches the same companies

used in other studies (see Brownlees and Engle (2016) and Acharya, Pedersen, Philippon

and Richardson (2016)). It is important to stress that we only consider firms that have been

trading throughout the sample, which implies that a number of institutions such as Lehman

Brothers, Bear Stearns, Freddie Mac and Fannie Mae are not included in our analysis. The

sample period spans March 1st 2007 to March 1st 2009. Following, Diebold and Yılmaz

(2014) we measure volatility using the high-low range Parkinson (1980)

σ̃2
i,t “ 0.361

´
phighi,t ´ plowi,t

¯2

,

12The differences with Foerster et al. (2011) stem from the fact that we use monthly growth rates whereas
they consider quarterly growth rates.
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where phighi,t and plowi,t denote respectively the max and the min log price of stock i on day t.13

As it is customary, we analyse the log of the high-low range rather than its level. The final

panel dimension is T “ 503 and N “ 88.

The volatility panel exhibits the typical stylized facts documented in the literature. Table

5 reports summary statistics on the series in the panel. The series have positive skewness,

excess kurtosis and a strong degree of persistence. There is strong evidence of a single factor

structure: A principal component analysis reveals that the 1st principal component explains

roughly 76% of the overall variation in the panel. The first principal component can be

associated with the overall degree of volatility in the market, in fact, the correlation with

the high-low range of the S&P 500 is 88%. The second principal component on the other

hand explains less than 4% of the overall variation in the panel. These results are in-line with

the evidence documented in Luciani and Veredas (2015) and Barigozzi and Hallin (2015).

We apply the granular detection methodology described in the previous sections to the

volatility panel. Table 6 reports the granular rankings of the top twenty firms as well as the

value of the concentration matrix column ratio statistic. It is natural to think of the granular

financial institutions in the volatility panel as systemic. To this extent, the table also flags the

institutions that are classified as either Globally Systemic (G-SIB) or Domestically Systemic

(D-SIB) by the Financial Stability Board. Inspection of the full set of results reveals that

larger firms are typically ranked higher: The rank correlation between }K̂i} and firm size is

0.39. The top ten includes a number of financial institutions that have been indeed deeply

involved with the financial crisis and its unwinding, that is Bank of America, JPMorgan and

Wells Fargo. These are also firms classified by the Financial Stability Board as G-SIBs. The

top ten also contains several D-SIBs like Northern Trust, Comerica. The k̂ ratio statistic

however indicates that only a small number of firms in the panel is granulars: Bank of

America, JP Morgan and Northern Trust.

13 It is important to acknowledge that more precise estimators based on high frequency data could also
have been employed (see, inter alia, Andersen, Bollerslev, Diebold and Labys (2003), Barndorff-Nielsen,
Hansen, Lunde and Shephard (2008)). The high-low range however has been documented to perform well
relative to more advanced alternatives (Alizadeh, Brandt and Diebold (2002)).
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We explore more thoroughly the relation between our granular statistic and the set of

SIFIs identified by the FSB. To this extent we define a SIFI binary response indicator si as a

n-dimensional vector of dummies, the i-th element of which is one if institutions i is either a

D-SIB or a G-SIB and zero otherwise. We then model the SIFI indicator using the following

logit regression model

logitppiq “ c0 ` c1}K̂i} ` c2voli ` c3sizi ` c4lvgi ,

where voli denotes the average volatility, sizi denotes the size i and lvgi the leverage of

firm i. We report in Table 7 the estimation results of the logit regression under different

sets of restrictions. The estimation results show that the granular ranking statistic and size

contribute significantly to probability of being a SIFI whereas volatility and leverage are not

significant. Also the magnitude of the psuedo-R2 shows that the contribution of the granular

statistic is sizeable.

8 Conclusion

In this work we introduce a panel model in which the idiosyncratic shocks of a (finite) subset

of time series influences the entire cross-section. We call these series granular in the sense

that the influence of such series does not vanish when the system dimension is large. We

work under the assumption that the set of granular series is unknown and our objective

is to introduce a selection methodology that consistently detects the set of granular series

from the data. A key property of the model we introduce is that the column norms of the

concentration matrix of the panel are large for the granular series. This motivates us to

introduce a granular detection framework based on the norms of the sample concentration

matrix. In particular, we use this statistic to construct indices to rank granulars as well as

selecting their number. The large sample properties of the proposed procedures are analyzed

and we establish that when the time series and cross-sectional dimensions are sufficiently
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large our procedure consistently detects the set of granulars. A simulation study is used

to show that our proposed procedure performs satisfactorily in finite samples. We apply

our framework to study systemic risk in finance using a panel of volatility measures during

the financial crisis (Diebold and Yılmaz (2014)). The methodology delivers economically

meaningful rankings of the most systemic institutions in the panel and identifies in particular

JP Morgan, Northern Trust and Bank of America as the granular institutions in the panel.
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Table 1: Granular Ranking Probabilities

n T k r 0.01 0.05 0.10 0.25 0.50 0.75 1.00
Banded error design

50 200 3 0 0.140 0.800 0.967 1.000 1.000 1.000 1.000
100 200 3 0 0.140 0.926 0.996 1.000 1.000 1.000 1.000
50 400 3 0 0.207 0.941 0.998 1.000 1.000 1.000 1.000
100 400 3 0 0.266 0.992 1.000 1.000 1.000 1.000 1.000
50 200 5 0 0.206 0.813 0.954 0.997 1.000 1.000 1.000
100 200 5 0 0.252 0.932 0.997 1.000 1.000 1.000 1.000
50 400 5 0 0.187 0.905 0.992 1.000 1.000 1.000 1.000
100 400 5 0 0.334 0.991 1.000 1.000 1.000 1.000 1.000
50 200 3 5 0.103 0.676 0.876 0.969 0.983 0.985 0.989
100 200 3 5 0.148 0.865 0.972 0.998 0.998 0.998 0.999
50 400 3 5 0.104 0.800 0.953 0.989 0.992 0.994 0.994
100 400 3 5 0.184 0.967 0.996 0.999 1.000 0.999 1.000
50 200 5 5 0.156 0.721 0.884 0.970 0.988 0.988 0.993
100 200 5 5 0.216 0.878 0.976 0.998 0.999 0.998 0.999
50 400 5 5 0.150 0.822 0.950 0.990 0.995 0.997 0.998
100 400 5 5 0.273 0.966 0.997 1.000 0.999 0.999 1.000

Sparse error design
50 200 3 0 0.201 0.809 0.968 0.999 1.000 1.000 1.000
100 200 3 0 0.225 0.937 0.995 1.000 1.000 1.000 1.000
50 400 3 0 0.214 0.931 0.998 1.000 1.000 1.000 1.000
100 400 3 0 0.312 0.992 1.000 1.000 1.000 1.000 1.000
50 200 5 0 0.269 0.816 0.956 0.998 1.000 1.000 1.000
100 200 5 0 0.293 0.931 0.996 1.000 1.000 1.000 1.000
50 400 5 0 0.284 0.917 0.993 1.000 1.000 1.000 1.000
100 400 5 0 0.373 0.989 1.000 1.000 1.000 1.000 1.000
50 200 3 5 0.138 0.695 0.872 0.966 0.982 0.982 0.986
100 200 3 5 0.177 0.859 0.977 0.996 0.997 0.998 0.998
50 400 3 5 0.147 0.832 0.954 0.989 0.994 0.996 0.996
100 400 3 5 0.232 0.967 0.997 1.000 1.000 1.000 1.000
50 200 5 5 0.214 0.733 0.891 0.972 0.987 0.988 0.991
100 200 5 5 0.241 0.881 0.971 0.997 0.999 0.999 0.999
50 400 5 5 0.222 0.839 0.953 0.991 0.996 0.997 0.997
100 400 5 5 0.311 0.963 0.997 0.999 1.000 1.000 1.000

The table reports the average proportion of correctly ranked granulars.
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Table 2: Granular Selection Probabilities

n T k r 0.01 0.05 0.10 0.25 0.50 0.75 1.00
Banded error design

50 200 3 0 0.098 0.190 0.520 0.883 0.979 0.992 0.994
100 200 3 0 0.104 0.377 0.773 0.969 0.995 0.999 1.000
50 400 3 0 0.093 0.404 0.833 0.988 0.998 1.000 1.000
100 400 3 0 0.090 0.732 0.974 0.999 1.000 1.000 1.000
50 200 5 0 0.044 0.101 0.357 0.832 0.959 0.969 0.986
100 200 5 0 0.048 0.265 0.782 0.981 0.995 0.998 0.999
50 400 5 0 0.042 0.207 0.661 0.963 0.993 0.997 0.999
100 400 5 0 0.047 0.652 0.941 0.998 1.000 1.000 1.000
50 200 3 5 0.117 0.136 0.310 0.482 0.594 0.587 0.615
100 200 3 5 0.115 0.273 0.556 0.771 0.789 0.781 0.795
50 400 3 5 0.098 0.188 0.418 0.656 0.704 0.708 0.723
100 400 3 5 0.135 0.525 0.785 0.882 0.884 0.875 0.878
50 200 5 5 0.036 0.068 0.141 0.428 0.575 0.626 0.641
100 200 5 5 0.042 0.159 0.507 0.784 0.825 0.838 0.852
50 400 5 5 0.044 0.105 0.296 0.608 0.708 0.746 0.759
100 400 5 5 0.047 0.425 0.787 0.902 0.916 0.922 0.917

Sparse error design
50 200 3 0 0.105 0.201 0.520 0.909 0.977 0.990 0.994
100 200 3 0 0.095 0.409 0.790 0.983 0.997 1.000 1.000
50 400 3 0 0.085 0.397 0.844 0.989 0.997 1.000 1.000
100 400 3 0 0.118 0.739 0.979 1.000 1.000 1.000 1.000
50 200 5 0 0.042 0.117 0.392 0.813 0.948 0.978 0.992
100 200 5 0 0.047 0.248 0.766 0.968 0.996 0.999 1.000
50 400 5 0 0.047 0.248 0.669 0.953 0.988 1.000 0.997
100 400 5 0 0.046 0.632 0.960 0.999 1.000 1.000 1.000
50 200 3 5 0.128 0.156 0.264 0.528 0.608 0.576 0.603
100 200 3 5 0.092 0.231 0.539 0.760 0.778 0.778 0.806
50 400 3 5 0.115 0.205 0.460 0.688 0.738 0.715 0.694
100 400 3 5 0.121 0.510 0.792 0.892 0.884 0.867 0.873
50 200 5 5 0.047 0.087 0.166 0.429 0.565 0.636 0.637
100 200 5 5 0.036 0.176 0.467 0.750 0.832 0.848 0.824
50 400 5 5 0.038 0.131 0.315 0.668 0.727 0.737 0.753
100 400 5 5 0.036 0.426 0.761 0.907 0.913 0.913 0.928

The table reports the average proportion of times the correct number of granulars is selected.
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Table 3: Granular Ranking Probabilities: R2
i versus }Ki}

n T k r 0.01 0.05 0.10 0.25 0.50 0.75 1.00
Banded error design

50 200 3 0 0.062 0.582 0.835 0.977 0.993 0.995 0.995
100 200 3 0 0.000 0.561 0.860 0.991 0.997 0.999 0.999
50 400 3 0 0.056 0.701 0.949 0.999 1.000 1.000 1.000
100 400 3 0 0.006 0.855 0.993 1.000 1.000 1.000 1.000
50 200 5 0 0.044 0.636 0.843 0.954 0.977 0.979 0.976
100 200 5 0 0.036 0.655 0.899 0.992 0.997 0.998 0.999
50 400 5 0 0.000 0.618 0.874 0.981 0.992 0.992 0.994
100 400 5 0 0.002 0.754 0.966 0.999 1.000 1.000 1.000
50 200 3 5 0.419 0.331 0.544 0.830 0.935 0.952 0.954
100 200 3 5 0.153 0.218 0.591 0.938 0.991 0.999 0.996
50 400 3 5 0.365 0.299 0.554 0.876 0.963 0.980 0.979
100 400 3 5 0.136 0.201 0.655 0.983 0.999 1.000 1.000
50 200 5 5 0.446 0.347 0.502 0.736 0.859 0.884 0.891
100 200 5 5 0.207 0.250 0.536 0.904 0.983 0.991 0.992
50 400 5 5 0.461 0.312 0.492 0.762 0.899 0.936 0.942
100 400 5 5 0.160 0.242 0.604 0.967 0.998 1.000 0.999

Sparse error design
50 200 3 0 0.685 0.622 0.692 0.704 0.764 0.850 0.908
100 200 3 0 0.524 0.524 0.653 0.556 0.485 0.529 0.621
50 400 3 0 0.765 0.775 0.820 0.840 0.890 0.926 0.948
100 400 3 0 0.600 0.690 0.659 0.553 0.486 0.533 0.579
50 200 5 0 0.807 0.619 0.792 0.830 0.902 0.940 0.953
100 200 5 0 0.508 0.790 0.894 0.928 0.951 0.977 0.981
50 400 5 0 0.627 0.543 0.739 0.661 0.664 0.768 0.848
100 400 5 0 0.706 0.793 0.777 0.668 0.673 0.707 0.773
50 200 3 5 0.390 0.460 0.712 0.904 0.964 0.967 0.966
100 200 3 5 0.143 0.465 0.788 0.963 0.986 0.984 0.987
50 400 3 5 0.306 0.355 0.645 0.830 0.859 0.871 0.849
100 400 3 5 0.102 0.440 0.685 0.794 0.830 0.826 0.823
50 200 5 5 0.451 0.535 0.744 0.917 0.965 0.968 0.964
100 200 5 5 0.184 0.472 0.792 0.969 0.987 0.989 0.993
50 400 5 5 0.369 0.507 0.755 0.890 0.915 0.910 0.903
100 400 5 5 0.129 0.539 0.794 0.872 0.866 0.860 0.850

The table reports the ratio between the average proportion of correctly ranked granulars based on the

R2 statistic and the the column norm statistic.
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Table 4: Descriptive Statististics

Ticker Company Name Ticker Company name

ANAT American National Insurance Co GNW Genworth Financial
AMP Signature Bank/New York NY HRB HR Block
AFG America Financial Group HBHC Hancock Holding Co
AIG American International Group THG The Hanover Insurance Group
AINV Apollo Investment HIG Hartford Financial Services Group/The
ASB Associated Banc-Corp HBAN Huntington Bancshares/OH
AIZ Assurant ISBC Investors Bancorp
BOH Bank of Hawaii JNS Janus Capital Group
ALL Allstate JLL Jones Lang LaSalle
AMG Affiliated Managers Group. KMPR Kemper
AXP American Express Co KEY KeyCorp
BAC Bank of America LM Legg Mason
BK The Bank of New York Mellon. LNC Lincoln National
BOKF BOK Financial MBI MBIA
BRO Brown and Brown MCY Mercury General
CFFN Capitol Federal Financial NYCB New York Community Bancorp
C Citigroup. NTRS Northern Trust
COF Capital One Financial ORI Old Republic International
GS Goldman Sachs Group PBCT People s United Financial
JPM JPMorgan PNC PNC Financial
MET MetLife. PFG Principal Financial Group
MS Morgan Stanley PRA ProAssurance
SPG Simon Property Group PB Prosperity Bancshares
USB U.S. Bancorp PRU Prudential Financial
WFC Wells Fargo RJF Raymond James Financial
CSH Cash America International RF Regions Financial
CBG CBRE Group SBNY Signature Bank/New York NY
CNA CNA Financial SLM SLM
CNO CNO Financial Group STT State Street
CNS Cohen and Steers SF Stifel Financial
CMA Comerica STI SunTrust Banks
CBSH Commerce Bancshares/MO SIVB SVB Financial Group
CACC Credit Acceptance SNV Synovus Financial
CFR Cullen/Frost Bankers TCB TCF Financial
ETFC E*TRADE Financial TMK Torchmark
EWBC East West Bancorp UMBF UMB Financial
EV Eaton Vance UNM Unum Group
ERIE Erie Indemnity Co VLY Valley National Bancorp
EZPW Ezcorp WDR Waddell and Reed Financial
FII Federated Investors WAFD Washington Federal
FCNCA First Citizens BancShares/NC WBS Webster Financial
FHN First Horizon National WTM White Mountains Insurance Group Ltd
FCE-A Forest City Realty Trust WRB WR Berkley
FULT Fulton Financial ZION Zions Bancorporation

The table reports the list of tickers and company names of the financial panel.

Table 5: Descriptive Statististics

Mean Std Dev Skew Kurt ACF(1) ACF(22)

q0.25 -3.131 0.507 0.352 2.717 0.725 0.417
Median -3.003 0.574 0.508 2.955 0.771 0.478
q0.75 -2.916 0.633 0.746 3.301 0.816 0.527

The table reports the 1st quartile, median and 3rd quartile
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Table 6: Granular Rankings

Rank Granulars K-Ratio G-SIB D-SIB
1 JPMorgan 3.951 �
2 Northern Trust 2.148 �
3 Bank of America 16.894 �
4 Commerce Bancshares/MO 14.520
5 Comerica 0.265 �
6 Allstate 2.673
7 Torchmark 2.296
8 Wells Fargo 0.498 �
9 U.S. Bancorp 0.202 �
10 Bank of Hawaii 3.195
11 Cullen/Frost Bankers 0.335
12 Associated Banc-Corp 1.008
13 American Express Co 14.521 �
14 Goldman Sachs Group 2.460 �
15 Prosperity Bancshares 1.900
16 MetLife. 0.740 �
17 Valley National Bancorp 5.926
18 UMB Financial 1.609
19 Citigroup. 0.184 �
20 Regions Financial 3.420 �

The table reports

Table 7: SIFI Prediction

}Ki} 0.441˚˚˚
p0.103q

1.072˚˚˚
p0.057q

voli 0.868
p1.734q

2.628˚˚˚
p1.045q

sizi 0.431˚˚˚
p0.093q

0.763˚˚˚
p0.286q

lvgi 0.008
p0.007q

´0.033
p0.023q

R̃2 0.354 0.003 0.405 0.014 0.745

The table reports
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Figure 1: Partial Correlation Network Representation
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Figure 2: Granular Ranking and Selection Probabilities

T “ 200 N “ 50

T “ 200 N “ 100

T “ 400 N “ 50

T “ 400 N “ 100

The figure shows the proportion of correctly ranked granulars (left panel) and of correctly selecting the

number of granulars (right panel) as a function of the standard deviation of the granular loadings σb and

the coefficient controlling the degree of dependence of the idiosyncratic shocks c�.
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Figure 3: Granular detection results for industrial production series
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Figure 4: Granular detection results for industrial production series for different sampling
periods.
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Table 8: Granular series US Industrial Production

Sampling period 1972-2007

Sector }K̂piq} 95% l 95% u
}K̂piq

K̂pi`1q}
Motor Vehicle Parts 126.76 84.63 168.90 1.35
Automobiles and Light Duty Motor Vehicles 94.02 57.59 130.45 2.57
Aluminum Extruded Products 36.58 12.45 60.71 1.01
Plastics Products 36.30 15.32 57.27 1.01
Miscellaneous Aluminum Materials 35.99 12.89 59.08 1.10
Motor Vehicle Bodies 32.70 12.56 52.84 1.16
Paper and Paperboard Mills 28.26 7.52 49.01 1.20
Household and Institutional Furniture and Kitchen Cabinets 23.59 5.57 41.61 1.14
Commercial and Service Industry Machines 20.70 4.22 37.18 1.03
Motor Homes 20.07 5.04 35.10 1.02

Sampling period 1972-1983

Sector }K̂piq} 95% l 95% u
}K̂piq

K̂pi`1q}
Motor Vehicle Parts 2834.50 574.82 5094.20 1.55
Household and Institutional Furniture and Kitchen Cabinets 1824.41 1066.51 2582.31 1.10
Plastics Products 1659.92 548.32 2771.44 1.50
Organic Chemicals 1110.20 -1024.23 3244.52 1.16
Automobiles and Light Duty Motor Vehicles 957.29 -803.40 2718.02 1.02
Commercial and Service Industry Machines 942.99 -580.02 2466.01 1.07
Animal Slaughtering and Meat Processing Ex Poultry 884.35 -84.73 1853.41 1.17
Other Textile Product Mills 755.53 -1124.24 2635.33 1.01
Semiconductors and Other Electronic Components 747.73 -3.63 1499.14 1.05
Foundries 711.83 -433.10 1856.80 1.03

Sampling period 1984-2007

Sector }K̂piq} 95% l 95% u
}K̂piq

K̂pi`1q}
Motor Vehicle Parts 304.19 172.18 436.21 1.08
Automobiles and Light Duty Motor Vehicles 281.65 155.94 407.36 1.84
Aluminum Extruded Products 153.12 51.79 254.45 1.03
Miscellaneous Aluminum Materials 148.86 49.31 248.42 1.40
Motor Vehicle Bodies 106.44 32.53 180.35 2.12
Truck Trailers 50.32 -3.60 104.24 1.02
Carpet and Rug Mills 49.44 -8.12 106.99 1.02
Paper and Paperboard Mills 48.43 -5.55 102.41 1.13
Motor Homes 42.76 -4.50 90.013 1.07
Concrete and Products 40.00 -11.65 91.649 1.07

The table reports the ranking of granular series for US industrial production.

51



Table 9: Granular series US Industrial Production based on R2

Sampling period 1972-2007
Sector R2

Plastics Products˚ 0.651
Household and Institutional Furniture and Kitchen Cabinets˚ 0.520
Metal Valves Except Ball and Roller Bearings 0.476
Architectural and Structural Metal Products 0.448
Other Miscellaneous Manufacturing 0.441
Sawmills and Wood Preservation 0.429
Reconstituted Wood Products 0.423
Fabricated Metals: Forging and Stamping 0.423
Fabricated Metals: Spring and Wire Products 0.422
Commercial and Service Industry Mach/Other Gen Purpose Mach 0.406

Sampling period 1972-1983
Sector R2

Plastics Products˚ 0.736
Household and Institutional Furniture and Kitchen Cabinets˚ 0.667
Metal Valves Except Ball and Roller Bearings 0.631
Architectural and Structural Metal Products 0.597
Other Electrical Equipment 0.596
Fabricated Metals: Spring and Wire Products 0.589
Fabricated Metals: Forging and Stamping 0.566
Commercial and Service Industry Mach/Other Gen Purpose Mach 0.548
Foundries 0.538
Other Miscellaneous Manufacturing 0.536

Sampling period 1984-2007
Sector R2

Carpet and Rug Mills 0.495
Reconstituted Wood Products 0.476
Breweries 0.443
Plastics Products˚ 0.439
Sawmills and Wood Preservation 0.398
Commercial and Service Industry Mach/Other Gen Purpose Mach 0.387
Metalworking Machinery 0.360
Other Miscellaneous Manufacturing 0.355
Architectural and Structural Metal Products 0.353
Boiler, Tank, and Shipping Containers 0.350

The table reports the ranking of granular series for US industrial production.

Table 10: State Space form Granular Series

Autoregressive matrix Φ Covariance matrix Ση

f1,t´1 g1,t´1 g2,t´1 f1,t g1,t g2,t
f1,t 0.173 0.246 0.215 0.105 0.169 0.264 f1,t 1.000 - -
g1,t 0.749 0.162 0.137 0.070 0.568 0.175 g1,t -0.514 0.020 0.432 0.024 -
g2,t -0.066 0.218 -0.022 0.094 -0.134 0.235 g2,t -0.867 0.009 0.427 0.017 0.782 0.015

The table reports the matrices of the state equation.
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