
 
 

PRELIMINARY 
PLEASE DO NOT DISTRIBUTE 

 

 

 Estimating the Moments of Long Horizon Returns 

 

 

Anthony Neuberger, Richard Payne 

Cass Business School, 
City, University of London 

 

March 2017 

 

Abstract 

Moments of long-horizon returns are important for asset pricing but are hard to 
measure. Proxies for these moments are often used but none is wholly satisfactory. 
We show analytically that high-frequency returns can be used to make more much 
precise estimates for long-horizon moments, under rather general conditions. 
Skewness comprises two components: the skewness of short-horizon returns, and 
a leverage effect, the covariance between contemporaneous variance and lagged 
returns. The kurtosis of long-horizon returns comprises three components: 
kurtosis in short-horizon returns, the covariance between cubed short-horizon 
returns and lagged returns, and the covariance between squared short-horizon 
returns and lagged squared returns (which we call the GARCH effect). Applying 
the framework to US stock index returns, we show that variation in monthly 
moments is essentially driven by the leverage effect and the GARCH effect while 
daily return skewness and kurtosis are largely irrelevant. We also show that 
monthly skewness has power to forecast US index returns at monthly and annual 
horizons.



1 
 

 

1.  Introduction 

There is good reason to believe that higher moments of returns – not just second moments – 
are important for asset pricing. A large theoretical literature, starting with Kraus and 
Litzenberger (1976), and continuing with the macroeconomic disaster research of Rietz (1988), 
Longstaff and Piazzesi (2004), and Barro (2006), hypothesises that heavy-tailed shocks and 
left-tail events in particular have an important role in explaining asset price behaviour. Barberis 
and Huang (2007) and Mitton and Vorkink (2007) argue that investors look for idiosyncratic 
skewness, seeking assets with lotto-type pay-offs. There is much empirical evidence suggesting 
that market skewness is time varying, and that it predicts future returns in both the time series 
(Kelly and Jiang, 2014) and in the cross-section (Harvey and Siddique, 2000, and Ang, 
Hodrick, Xing and Zhang, 2006). Boyer, Mitton and Vorkink (2010) and Conrad, Dittmar and 
Ghysels (2013) show that high idiosyncratic skewness in individual stocks too is correlated 
with positive returns. Ghysels, Plazzi and Valkanov (2016) show similar results for emerging 
market indices. 

But there are two serious problems in measuring these moments at the long horizons (months, 
years) of interest to asset pricing. First, the higher the moment, the more sensitive the estimate 
is to outliers. Second, the longer the horizon, the smaller the number of independent 
observations. We show how these problems can be mitigated by using the information in high 
frequency returns to estimate the skewness and kurtosis of long horizon returns with greater 
precision. 

As is well known, in the case of the second moment the use of high frequency information can 
help one to overcome the problems associated with a limited data span. Under the assumption 
that the price process is martingale, the annualized variance of returns is independent of the 
sampling frequency, so one can use the high frequency returns to estimate the variance of long 
horizon returns. But this simple result does not hold for higher moments - there is no necessary 
relationship between the higher moments of long and short horizon returns. If daily returns are 
volatile, then annual returns are also volatile. But if daily returns are highly skewed and i.i.d., 
then annual returns will show little skew. Conversely, daily return distributions can be 
symmetric, while annual returns are skewed (e.g. in a Heston-type model where volatility is 
stochastic and shocks to volatility are correlated with shocks to prices). Similar examples could 
be given for kurtosis. 

The purpose of this paper is to demonstrate how to exploit the information in high frequency 
returns to estimate skewness and kurtosis of long horizon returns. The only assumption we 
make about the price process is that it is martingale, and that the relevant moments exist. We 
prove that the skewness of long horizon returns can come from one of only two sources: the 
skewness of short horizon returns; and what has been called the leverage affect, i.e. the 
covariance between lagged returns and squared returns. Similarly, the kurtosis of long horizon 
returns has just three possible sources: the kurtosis of short horizon returns; the covariance 
between cubed returns and lagged returns; and the covariance between squared returns and 



2 
 

lagged squared returns (which we refer to as the GARCH effect). When we take these 
theoretical results to the data, we show that the skewness of the US stock market at long 
horizons is due almost entirely to the leverage effect, and its kurtosis to the GARCH effect. 
Thus, the left-skew and excess kurtosis in annual stock market returns owe virtually nothing to 
the skew and kurtosis of daily returns. 

To date, the literature has used a variety of approaches to measure the higher moments of long 
horizon returns. The most straightforward is to apply the standard estimators to historic returns. 
Kim and White (2004) show that these estimators are subject to large estimation errors1  and 
advocate the use of robust estimators such as those developed by Bowley (1920), which are 
based on quantiles of the observed distribution. The attraction is that quantiles can be estimated 
with much greater precision than moments. This solution is used in Conrad, Dittmar and 
Ghysels (2013) and the methodology is further developed in Ghysels, Plazzi and Valkanov 
(2016). The weakness of the approach is that it assumes that the body of the distribution, which 
is captured by the quantiles, is highly informative about the behaviour of the tails, which 
determine the higher moments. 

Kelly and Jiang (2014) follow an alternative approach. They focus on the tails. They get power 
not by taking a very long time series, but rather by exploiting the information in the cross-
section. They assume that tail risk for individual stocks is a combination of stable stock specific 
tail risk and time-varying market-wide tail risk. They can therefore exploit the existence of a 
large number of stocks to get a much more precise estimate of market-wide tail risk. The 
validity of the inference depends not only on the assumed decomposition of the tail component, 
but also on assumptions about the dependence of returns across stocks.The options market is 
an attractive source of information about moments since, unlike the underlying market which 
shows just one realization of the price process, the options market reveals the entire implied 
density of returns at any point in time. The technology for extracting implied skewness and 
kurtosis from options prices is well-established (Bakshi, Kapadia and Madan, 2003). The 
method can only be used on assets – such as the major market indices - that support a liquid 
options market, and cannot be used for managed portfolios. But there is a more fundamental 
issue: implied measures reflect risk premia as well as objective probabilities. As demonstrated 
by Broadie, Chernov and Johannes (2007), the wedge between the objective price process and 
the process as implied by option prices (the so called risk neutral process) can be very wide. 

We show by simulation that our measures of skewness and kurtosis are indeed substantially 
more powerful than standard estimators, reducing standard errors on skewness by around 60% 
and on kurtosis by around 30%. We apply our technology to the US stock market over the last 
90 years, and show that monthly skewness has averaged -0.7, and monthly excess kurtosis has 
average +1.3, with substantial time variation. We also show that monthly skew and kurtosis 
owe virtually nothing to their daily counterparts; rather monthly skew is due almost entirely to 

                                                
1 To estimate the skewness (kurtosis) of a normally distributed random variable with a standard error of 0.1 
requires a sample size of 600 (2400). Even for monthly returns, this would require 50 (200) years of returns data. 
If returns are non-normal, the standard errors are generally substantially higher. Monthly returns on the US market 
over the last 50 years have a skew coefficient of -0.98; the bootstrapped standard error is 0.3. 
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the Leverage effect, and monthly kurtosis to the GARCH effect. Finally, we show that monthly 
skew, when used in conjunction with the tail risk measure of Kelly and Jiang (2014) predicts 
returns, with more negative skew forecasting more positive returns. 

The rest of the paper proceeds as follows. In Section 2 we develop the theoretical relationship 
between low frequency skewness and kurtosis and their high-frequency counterparts. In 
Section 3 we demonstrate the power of the technique through simulation. Section 4 provides 
an empirical application to the US stock market. Section 5 concludes. 

2. THE THEORY 

2.1 Moments of price changes 
We work in a discrete time setting, .tÎZ.  The asset has discounted price Pt (“the price”).We 
are concerned with the distribution of returns from time t  to t+T. For brevity, we refer to the 
time increment as a day, and the long horizon as a month, but obviously nothing hangs on this. 
The term kurtosis is used specifically for excess kurtosis. 

The problem we are interested in is: 

[P]: Let { }: ...,0,1,...= =tP P t  be a strictly positive martingale process, whose 

associated returns process r, where rt := Pt/Pt-1, is strongly stationary. The long horizon 
returns process R is defined by Rt := Pt/Pt-T. How can one estimate higher moments of 
long horizon returns R efficiently, assuming that these moments exist? 

Problem P is difficult because it deals with returns (ratios) rather than with price changes 
(differences). We therefore first address a simpler problem, P*, and use the solution as a guide 
to solving P. 

The simpler problem is: 

[P*]: Let { }: ...,0,1,...tP P t= =  be a real-valued (not necessarily positive) martingale 

process whose associated difference process d, where dt := Pt – Pt-1, is strongly 
stationary. The long horizon difference process D is defined by Dt := Pt - Pt-T. How can 
one estimate higher moments of D efficiently, assuming that these moments exist?  

The solution to P* is given by 

Proposition 1 

The volatility, skewness and kurtosis of monthly price changes is related to the distribution 
of daily price changes in the following way 
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Proof: the full proof is in the Appendix. 

Proposition 1 gives expressions for the volatility (the square root of the variance rate), the 
skewness and the excess kurtosis of monthly price changes. The first result is familiar: the 
volatility of price changes is the same whether computed from monthly or daily data. The 
second result says that skew at the monthly horizon has just two sources: daily skew and a term 
we call leverage. Daily skew attenuates with horizon with the square root of time. The leverage 
term is proportional to the covariance between squared price changes and the quantity y*, 
which is equal to the difference between the opening price on the day and the average price 
over the last month. 

The final result says that the kurtosis of monthly returns has just three sources: daily kurtosis 
attenuating with time, the covariance between cubed price changes and y*, and the covariance 
between squared price changes and z*. z* is a measure of the average squared price change 
over the last month. 

In order to demonstrate the logic underlying Proposition 1 (and indeed the main result in this 
paper, Proposition 2) and the role of the assumptions we make (martingale, strict stationarity), 
it is useful to review the proof of one of the elements of the proposition, that concerning 
skewness.  

Start with an algebraic decomposition of the third power of the monthly price change 
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Taking conditional expectations of both sides, the third term drops out because of the 
martingale assumption2, so 
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*
1ty -  is the difference between today’s opening price and the T-day moving average3. Using 

strict stationarity, the conditional expectations can be replaced by unconditional expectations. 
Substituting *

ty  in to (4) gives the following expression for the unconditional third moment  

 3 3 * 2
13 .t t t tD T d T y d-é ù é ù é ù= +ë û ë û ë ûE E E   (6) 

*
1ty -  is mean zero, so the expectation can be replaced by the covariance, giving 

 ( )( )3 3 * 2
13cov , .t t t tD T d y d-é ù é ù= +ë û ë ûE E   (7) 

A similar argument shows that 

 2 2 .t tD T dé ù é ù=ë û ë ûE E   (8) 

The result in proposition 1 then follows immediately from the definition of the skewness 
coefficient. 

2.2 Unconditional Moments of Returns 
The objective is to produce a result akin to Proposition 1, one that applies to moments of returns 
rather than to price changes. We now work with daily returns, 1 ,t t tr P P-=  and monthly returns, 

.-=t t t TR P P  The problem is intractable if we stay with the standard definitions of moments. 
It is necessary to modify the definition of moments. 

Define 

                                                
2 If the price process were not martingale, there would be an additional term in the skew, the covariance between 
price changes and past volatility. But there is reason to believe that any such term would be small, at least in the 
case of the equity market. As Bollerselv et al (2013, p210) say: “The most striking empirical regularities to emerge 
from this burgeon literature are that …returns are at best weakly positively related, and sometimes even negatively 
related, to past volatilities.” 
3 The asterisk is used to link this variable with the corresponding variable in the problem P. 
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x(2,L) approximates the second power of log returns, as does x(2,E). Similarly, x(3) and x(4) 
approximate the third and fourth powers, as can be seen by doing a Taylor expansion, and is 
shown graphically in Figure 1. Modifying the definitions of moments in this way is not 
unprecedented. The Model Free Implied Variance that is widely used by both academics and 
practitioners. It is defined as 

 [ ] ( ) ( )2,: ,LMFIV R x Ré ù= ë û
Q= E   (10) 

where the Q  superscript denotes that the expectation is under the pricing measure. It also 
follows the definition of realized variance in Bondarenko (2014). A definition of skewness 
similar to the above is seen in Neuberger (2012).  

We also define volatility of the return (vol[r]) as the square root of the variance rate.  

Figure 1 

 

With these definitions, we can now state the main theoretical result of this paper 

Proposition 2 

If P is a strongly stationary martingale process, the volatility, skewness and kurtosis of 
monthly returns (as defined in (9)) is related to the distribution of daily returns as follows 
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Proof: the proof is similar to that of Proposition 1; details in the Appendix. 

This is virtually identical to Proposition 1. It can be seen that 

• Volatility of monthly returns is identical to the volatility of daily returns. 
• The skew in daily returns generates a much smaller ( )1 T  skew in monthly returns. 

• If monthly returns have significant skew, it must be through the leverage effect, the 
correlation between volatility and past returns. Past returns are measured by y, which is 
the net return relative to the one month moving average4. 

• Kurtosis in daily returns generates a much smaller (1/T) kurtosis in monthly returns. 
• If annual returns are significantly leptokurtic, it is for one of two reasons: 

- because daily skew is correlated with past returns (as measured again by y); 
- or because of a GARCH effect whereby current variance is correlated with past 

variance. Past variance is measured by z, which is a function of the average 
realized variance over horizons of up to one month, again with more recent 
experience having more weight. 

The results are quite general; there is no presumption about any functional form for the 
stochastic process driving the price. In a Merton (1976) jump-diffusion model, the asymmetric 
jump creates skewness and kurtosis. The absence of any covariation between volatility and 
lagged returns and lagged squared returns (volatility is constant) ensures that there is no 
leverage or GARCH effect, so skewness and kurtosis attenuate rapidly with the horizon. A 
Heston (1993) model has no skewness or conditional kurtosis in short horizon returns, but does 
generate a leverage effect and hence skewness in longer horizon returns because correlation 
between innovations in returns and innovations in volatility, coupled with the persistence of 
volatility, creates a correlation between volatility and lagged returns. It also generates kurtosis 
                                                
4 The moving average in this case is the rolling harmonic mean. 
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because the volatility of volatility and the persistence of volatility shocks creates a correlation 
between current volatility and lagged volatility. GARCH processes generate heteroscedasticity 
in long horizon returns through the persistence of volatility shocks. To generate skewness the 
various GARCH variants (NGARCH, QGARCH etc) have volatility reacting asymmetrically 
to positive and negative return shocks; as with Heston, this creates a correlation between 
volatility and lagged returns. 

2.3 Conditional moments 
Proposition 2 applies to unconditional moments. There are strong grounds for believing that 
moments are time varying. In this section we show how to use high frequency returns to make 
improved estimates of conditional moments. The results are somewhat less neat than before, 
but there is an offsetting advantage. We no longer need to assume that the price process is 
strictly stationarity – indeed, the unconditional moments need not necessarily exist. 

The concept of realized moments is of central importance. In the case of the second moment, 
the natural definition of realized (daily) variance over some period (t, w) is 
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,

1
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= å
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This corresponds to the standard definition, except that we use x(2L)(r) in place of (lnr)2. We 
have already shown, in the proof of Proposition 2, that the realized variance ( )2

,
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month (t, t+T) is an unbiased estimator of the conditional variance of monthly returns at the 
beginning of the month, [ ]var .+

L
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 ( ) ( )2,
, var .e+ + += +L L
t t T t t T t Trx R   (14) 

e +t T is an estimation error with zero mean. 

With moments varying over time, the statistic of interest is the average moment over some 
period (t, w) 
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Using (14), we can construct an unbiased estimator of the average monthly conditional variance 
over the period as 
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The estimated monthly variance over a period is composed of two terms. The first is the average 
realized daily variance expressed as a monthly rate. The second term is a boundary or edge 
effect, adding in realized daily variances in the month at the end of the period and subtracting 
comparable terms from the first month. With a strictly stationary process this boundary effect 
would be mean zero. We do not assume stationarity but will assume that its impact is second 
order. When we say “ignoring boundary effects”, we mean dropping such terms. 

Define the realized third and fourth moments 
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Proposition 3 

If P is a martingale process, the average conditional second, third and fourth moments of 
monthly returns over a period (t, w) can be estimated from the corresponding realized 
moments of daily returns (as defined by (14) and (17)), multiplying them by ( ).-T w t  

Ignoring boundary effects, the estimators are unbiased.  

Proof: substantially the same as for Proposition 2. 

Although T, the length of the “month”, only appears explicitly in proposition 3 as a scaling 
factor, it is implicit in the definitions of y and z – the monthly third and fourth moments depend 
on the covariances of daily variance and skewness with returns and variances over the previous 
month. 

In the empirical work, we will generally normalize the third and fourth conditional moments 
by the conditional variance, and refer to the results as realized skewness and kurtosis. However, 
these are not unbiased estimators of skewness and kurtosis unless the skewness and kurtosis 
coefficients are uncorrelated with variance.  

3. Simulation Results 

3.1 Results for variance, skewness and kurtosis 

We now evaluate the performance of our estimators of higher moments through a series of 
simulation experiments. We compare the estimators both with standard estimators and with 
quantile-based estimators.  

Returns are simulated from three different models; a geometric Brownian motion (GBM), a 
Heston model and an EGARCH specification. For each model we simulate 10,000 paths for 
daily returns, each of length 5000 (i.e. roughly 20 years of return data in each path).  
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The parameters for each model are derived from fitting them to recent spans of daily US stock 
market returns. For the GBM and the Heston model, the parameters are taken from Eraker 
(2004). Those estimations use daily S&P-500 returns from January 2nd 1980 to December 31st 
1999. The EGARCH parameters are obtained from our own fit of such a model to daily value-
weighted CRSP US stock returns covering the period from January 2nd 1980 to the end of 
December 2015. 

Given the parameters for a particular model, the objects that we wish to measure are the 
standard deviation, skewness and kurtosis of 25-day (i.e. roughly monthly) returns, where these 
are as defined in equation (9). We employ three estimation techniques for each moment. First, 
we construct the sample moments of non-overlapping 25-day returns (and we refer to these 
subsequently as ‘Monthly’ estimates). Second, we measure the sample moments using 
overlapping 25-day returns (referred to later as ‘Overlapping’ estimates).5 Finally, we 
implement the estimators from Proposition 2 (which we label ‘NP’). 

Results from these simulations are given in Tables 1 to 3 and Figures 2 to 4. Table 1 and Figure 
2 show the simulation results when returns are generated by a GBM. Table 2 and Figure 3 give 
simulation results for the Heston model. Finally, Table 3 and Figure 4 show the EGARCH 
results. Each table gives statistics on the distribution of estimates from all three estimation 
techniques and for each of the three moments from across the 10,000 sample paths. The figures 
show the histograms of estimates from the 10,000 paths. In the discussion below, we focus on 
skewness and kurtosis estimates. 

Table 1: simulation results for Geometric Brownian Motion 

Standard deviation 
 NP Monthly Overlap 

Mean 0.0469 0.0469 0.0469 
STDEV 0.0005 0.0021 0.0019 
5th prctile 0.0461 0.0434 0.0438 
95th prctile 0.0477 0.0504 0.0501 

Coefficient of Skewness 
 NP Monthly Overlap 

Mean -0.0053 -0.0043 -0.0047 
STDEV 0.0351 0.2480 0.2420 
5th prctile -0.0625 -0.4084 -0.4015 
95th prctile 0.0533 0.4120 0.3957 

Excess Kurtosis 
 NP Monthly Overlap 

Mean -0.0023 -0.0248 -0.0211 
STDEV 0.0714 0.3103 0.2164 
5th prctile -0.1121 -0.4600 -0.3248 
95th prctile 0.1216 0.5323 0.3629 

 

                                                
5 So for each simulated return path of 5,000 data points, the ‘Monthly’ estimator uses 200 non-overlapping 25-day returns and the 
‘Overlapping’ estimator uses 4,976 overlapping 25-day returns. 
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Under the assumption that daily returns follow a GBM, 25-day skewness and kurtosis should 
both be zero. Table 1 confirms that, on average, this is true for all three estimation techniques. 
More importantly, the dispersion of the estimates for the NP method are greatly reduced 
relative to those from monthly and overlapping estimations. The standard deviations of 
estimates from our method are between 70% and 90% smaller than those from other methods 
(and the distances between the 5th and 95th percentiles of the distributions of estimates are 
similarly reduced). The improvement in estimation accuracy for the NP method is most striking 
for skewness, but only slightly less impressive for kurtosis. Overall, for both skewness and 
kurtosis and regardless of which dispersion measure you favour, the use of high-frequency data 
to improve low-frequency moment estimates provides a substantial improvement in accuracy. 
Figure 2 shows the distributions of estimates under the GBM assumption and the improved 
accuracy of the NP estimation method over the others is clear. 

Table 2: simulation results for Heston model 

Standard deviation 
 NP Monthly Overlap 

Mean 0.0469 0.0468 0.0468 
STDEV 0.0023 0.0032 0.0032 
5th prctile 0.0431 0.0417 0.0418 
95th prctile 0.0508 0.0524 0.0522 

Coefficient of Skewness 
 NP Monthly Overlap 

Mean -0.2728 -0.2616 -0.2584 
STDEV 0.1025 0.3543 0.3478 
5th prctile -0.4454 -0.8341 -0.8204 
95th prctile -0.1147 0.3178 0.3097 

Excess Kurtosis 
 NP Monthly Overlap 

Mean 1.0769 1.0014 1.0194 
STDEV 0.4156 0.8426 0.6910 
5th prctile 0.5485 0.0444 0.2442 
95th prctile 1.8369 2.4540 2.2193 

 

For the Heston model, we expect excess kurtosis (as the variance of daily returns is changing 
through time) and negative skew (as innovations to the variance equation and the return 
equation are negatively correlated). Again all three estimation techniques pick these features 
up, but again use of the NP method results in a significant reduction in the spread of estimation 
errors. For skewness, the standard deviation of estimates for the new method is around 70% 
smaller than those of the monthly or overlapping methods, while for kurtosis improvements 
are between 40% and 50%. Again, the improved precision generated by the new estimator is 
clearly visible in Figure 3. 
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Finally, the estimated EGARCH model also generates negative skew and excess kurtosis and 
these appear in all estimation methods. Table 3 shows that the NP estimation technique 
dominates in terms of accuracy under this model also but the improvements in accuracy are 
less pronounced. The standard deviation of skewness estimates is around 60% smaller for the 
new method but the standard deviation of the kurtosis estimates drops by only 20 to 30%. 
Figure 4 plots these results. 

Table 3: simulation results for EGARCH model 

Standard deviation 
 NP Monthly Overlap 

Mean 0.0605 0.0603 0.0603 

STDEV 0.0031 0.0048 0.0048 

5th prctile 0.0555 0.0529 0.0531 
95th prctile 0.0657 0.0686 0.0687 

Coefficient of Skewness 
 NP Monthly Overlap 

Mean -0.6656 -0.6348 -0.6280 
STDEV 0.1786 0.4314 0.4246 

5th prctile -0.9875 -1.3672 -1.3408 

95th prctile -0.4311 0.0082 0.0171 

Excess Kurtosis 
 NP Monthly Overlap 

Mean 2.1650 1.9278 1.9424 
STDEV 1.4409 2.0072 1.7886 

5th prctile 0.8391 0.2024 0.4155 

95th prctile 4.5723 5.2941 4.9854 

 

Overall, regardless of which model we choose or which moment one focusses on, use of the 
estimators described in Proposition 2 leads to much more precise estimates of monthly return 
moments. Improvements are greater for skewness estimates than they are for kurtosis and are 
larger for the GBM and Heston models than they are for the EGARCH specification. But in 
almost all cases, use the NP moment estimators leads to the dispersion of estimated coefficients 
being reduced by 50% or more. 
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Figure 2 
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Figure 3 
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Figure 4 
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3.2 Focus on skewness and comparison with quantile-based estimation 

As the application to the US stock market that we provide later in the paper will use the NP 
method applied to measurement of skewness, in this section we focus on estimation of the third 
moment. First we investigate how the performance of the estimator changes as the level of 
skew in returns changes and second we compare performance with a quantile-based estimate 
of skew recently proposed by Ghysels, Plazzi and Valkanov (2016). 

3.2.1 Performance of the NP estimator across skew levels 

In order to investigate how the performance of our estimator changes with the level of skew in 
returns, we take a Heston model and vary the correlation between return and variance 
innovations between -0.9 and +0.9 (with the former giving large negative skewness and the 
latter generating large positive skewness). All other parameters are set at the values from Eraker 
(2004). For each parameter set, our simulation contains 1,000 replications of 1,000 daily returns 
and from these we estimate 25-day skew. 

The results are summarised in Figure 5. The x-axis of this figure shows the correlation 
parameter from the Heston model. Against each correlation parameter, we plot the average 
estimated skewness from our 1,000 runs, as well as the inter-quartile range and the 5th and 95th 
percentiles of the distribution of skew estimates. Also plotted on Figure 5 is the theoretical 
value of the coefficient that one should obtain from the Heston model at each parameter value. 

The Figure demonstrates that the NP estimator does an excellent job of tracking skewness, on 
average, across the range of parameters. There is a slight tendency for the estimator to be biased 
towards zero when the theoretical skew is large, though, with the largest bias around 0.1 when 
theoretical skewness is at a value of 0.9. The inter-quartile range is fairly stable at a value of 
around 0.25. The bias in the estimation of the coefficient of skewness arises due to the fact that 
it is a ratio of the estimated third moment to the cube of the estimated standard deviation. 
Estimates of both of these moment measures using the NP method are unbiased, but estimation 
errors in second and third moments are correlated and it is this that causes the bias in the 
estimated skewness. 

Obviously, as one changes the quantity of high-frequency data points one uses to construct low 
frequency skew, the estimation becomes more accurate. Figure 6 is an identical plot of results 
but from simulations of time-series of length 10,000, rather than 1,000, and comparison of 
Figures 5 and 6 clearly shows the improvement in estimation precision, with the bias dropping 
to close to zero and the inter-quartile range to around 0.1. 
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Figure 5 

 

Figure 6 
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Figure 7 

 

Figure 8 
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3.2.2 Comparison of NP and quantile-based skew measures 

Ghysels, Plazzi and Valkanov (2016) (hereafter GPV) propose a skewness estimator based on 
the quantiles of the return distribution in their recent work on international asset allocation. We 
now compare the performance of our estimator and their preferred estimator based on data 
simulated from a Heston model for returns. We use exactly the same simulation setup as in 
Section 3.2.1, except now we estimate NP skewness and GPV’s quantile skewness for each 
simulated set of data. 

The GPV skew estimator is as follows; 

6	×	
{ %& '( − %*., '( − %*., '( − %-.& '( }01*.,

*
%& '( − %-.& '( 01*.,

*
	×

%& 2 	01*.,
*

%&3 2 	01*.,
*

 

 

where '( are returns measured at the frequency of interest (e.g. monthly), %& 4 	 is the ath 
quantile of the distribution of x and the %& 2 	are the quantiles of the standard Normal 
distribution. In their implementation, GPV approximate the integrals in the first ratio by 
aggregating across the following set of quantiles: [0.99, 0.975, 0.95, 0.90, 0.85, 0.80, 0.75].  

As this formula makes clear, the GPV estimator estimates skew by looking directly at the 
symmetry (or lack of it) of a and 1-a quantiles with respect to the median. This is captured by 
the numerator of the first ratio in the equation while the other terms are just scaling factors. 

For each simulation run, we apply the GPV estimator to overlapping 25-day returns. It is worth 
re-iterating that the GPV estimator and the estimator proposed here are designed to target 
slightly different measures of skewness. GPV propose an estimator of the traditional skewness 
coefficient whereas our estimator is of the modified skew coefficient as defined in equation 
(9). However, differences in these targets are minor. 

The results from our comparison are displayed in Figure 7. As before, the x-axis values of 
Figure 7 are the Heston correlation parameters and skewness is on the y-axis. 

The results from the Figure are encouraging. The NP and the GPV mean estimates lie very 
close together in Figure 7, but the precision of the NP estimator is much greater. The inter-
quartile range of the GPV estimates average around 0.5 i.e. around twice as large as that for 
the NP estimator. In Figure 8, where simulations are based on 10,000 rather than 1,000 high-
frequency returns, the results on precision are similar, with the NP estimator having an inter-
quartile range around half that of the GPV estimator. 
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4. Application to the US Equity Market 

In this section, we apply our technology to the US stock market. In particular, we document 
how the moments of long horizon (monthly) returns have evolved over the last ninety years, 
and the extent to which the moments of monthly returns derive from  the moments of short 
horizon (daily) returns. We then focus on skew, and explore the relationship between time 
variation in skew and future market returns. 

The returns cover the period from 1926 to the end of 2015 and they were retrieved from Ken 
French’s data library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library 
.html). 

4.1 Moments of 25-day returns for non-overlapping sample years 

To document the behaviour of the moments of long horizon returns, we take non-overlapping 
years of data and use the daily data within each year to estimate 25-day return standard 
deviations, skewness and excess kurtosis. We choose 25-day returns to approximate a monthly 
horizon. Time-series plots of the three moments estimated using the NP method, and skewness 
estimated using the quantile method, are presented in Figure 9.6  

The top left panel of Figure 9 indicates that, over the 90 or so years that our data cover, US 
stock market volatility follows a U-shaped pattern, punctuated by infrequent upward spikes. 
Stock markets were most volatile in the Great Depression and the recent Financial Crisis, but 
there was also substantial market volatility around the oil price shocks of the early 1970s and 
the stock market crash of 1987.  

The NP skew measures indicate that monthly stock market skew is almost always negative 
(with a mean of -0.7) over our 90 years of data. The only exception to this is a period covering 
the late 1970s to mid-1990s where several years of slight positive skew are apparent (although 
one would expect this positive skew to be statistically insignificant). Times of particularly 
severe negative skewness include the Great Depression, the mid-1960s and the stock market 
crash of 1987. Interestingly, the recent Financial Crisis does not appear to be associated with 
large negative skew. If anything, our estimates suggest that since the mid-1990s, US stock 
market skew has been relatively subdued. The quantile-based skew measure, in the bottom 
right panel, is also negative on average (averaging -0.35), but it is less easy to see a pattern in 
the monthly skews here than it is in the NP estimates. The quantile skew and NP skew measures 
are positively correlated, with a correlation coefficient of 0.50. 

Finally, the bottom left panel of Figure 9 show estimates of excess monthly return kurtosis 
estimated from daily data. As expected, excess kurtosis is positive on average, with a mean of 
1.34, and the Great Depression and the 1987 crash show up prominently. Again, though, the 
recent Financial Crisis does not appear to display any unusual excess kurtosis.  

                                                
6 The quantile based skew measure is estimated from the set of overlapping 25 day returns that can be constructed 
from the year of daily returns.  
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Finally, comparing the top right and bottom left panels, there is clear evidence that years of 
large negative skew are also those with large excess kurtosis. In fact the correlation between 
the annual time-series for monthly skew and monthly excess kurtosis is -0.73. Thus at times 
when the weight in the tails of the distribution of returns is rising, the left tail is becoming 
heavier than the right. 

Figure 9 

 

4.2 The components of 25-day skew and kurtosis 

As Proposition 2 makes clear, skew in long horizon returns is driven by skew in high-frequency 
returns and by the leverage effect. Long-horizon kurtosis has three possible sources: kurtosis 
in high-frequency returns, covariation between lagged returns and current cubed returns (which 
we refer to as the ‘Cube’ component) and covariation between current and lagged squared 
returns (which we will call the GARCH effect).  

Figure 10 shows the time-series variation in the two skew components for the years 1927 to 
2015. It is clear that all of the action in generating negative skewness comes from the leverage 
effect. The influence of skew in daily returns is negligible. Thus, both the average level of 25-
day skew in our sample and its significant variation through time are attributable to correlations 
between lagged returns and current squared returns. 

Figure 11 shows the decomposition of 25-day kurtosis into its three components (i.e. daily 
kurtosis, the cube term and the GARCH term). As with skew, the contribution of the daily 
moment is close to zero and its time-series variation is small. The Cube term is also close to 
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zero on average and so almost all of the mean excess kurtosis apparent in the data, as well as 
the time-variation in that excess kurtosis, comes from the GARCH component. 

Figure 10 

 

Figure 11 
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essentially unconnected. Low-frequency skewness and kurtosis are driven by leverage and 
GARCH effects respectively. 

4.3Forecasting stock market returns using skew 

As argued by Kraus and Litzenberger (1976) and much of the subsequent literature, there are 
good theoretical grounds for believing that if market skewness is time-varying, it should 
forecast future market returns. The skewness that is relevant for asset pricing returns is the 
skewness of long horizon returns. Our new technology enhances our ability to explore the 
relationship between skewness and returns. 

We take as a starting point the work of Kelly and Jiang (2014). These authors propose a 
measure of monthly tail risk for the US stock market that is based on information in the left-
tails of index constituents. Specifically, they assume that all constituent stocks have common 
tail shapes so that the tail shape of the index can be accurately estimated by aggregating tail 
events across stocks. With this assumption, they build their ‘tail risk’ measure, which they 
describe as measuring the risk of ‘extreme market movements’ built from the ‘crash events’ of 
individual companies. Importantly, using data beginning in 1963, they show that tail risk is a 
powerful positive predictor of US stock market returns so that the greater the measured risk at 
t, the higher the mean returns from t to t+k (where k ranges from 1 month to 5 years). 

We build upon the Kelly and Jiang (2014) analysis. As our brief discussion of their paper 
suggests, building a risk measure from the left tail of stock returns is akin to measuring crash 
risk, and a more direct measure of index crash risk can be obtained from the skewness of the 
index return. The more negative the skew of the index return, the greater the crash risk. Thus 
we augment the Kelly and Jiang (2014) forecasting framework with a skew variable. We run 
monthly regressions such as that below; 

'(,(67 = 1 + :-;<=>( + :3?@AB( + C( 

where '(,(67 is the return on the US stock market from t to t plus k months and the two right-
hand side variables are tail risk measured over the month ending at t and 25-day index skewness 
measured using our proposed estimator. Skewness is measured using data from the past 500 
days and k varies from 1 month to 60 months. 

Table 4 contains the results from running our forecasting regressions. First we run regressions 
with tail risk only, thus mimicking the work of Kelly and Jiang (2014) and then we add our 
skew measure to the specification.  

A first observation is that we entirely corroborate the results in Kelly and Jiang (2014). Their 
tail risk measure is positively and significantly related to returns across all forecasting horizons, 
with the explanatory power of the regressions rising from 1% at the 1 month horizon to 28% 
at the 5 year horizon. Thus greater tail risk robustly predicts greater returns. 

When we add 25-day index skew into the picture, however, some interesting additional results 
emerge. First of all, the coefficient on skew is significant and negative for forecasting horizons 



24 
 

of 1 year or less and is insignificant otherwise. Tail risk retains its sign and significance in all 
specifications. Thus, skewness has incremental forecasting power for monthly and annual 
returns, such that greater negative skew today leads to greater positive returns in the future. At 
those horizons, the addition of skewness to the regression improves the explanatory power (as 
measured by R2) by about 50% . 

Two insights emerge from this analysis. First, tail risk is not simply a measure of asymmetry 
in index returns. Tail risk and 25-day skewness simultaneously contribute to forecasting returns 
so tail risk is not encoding the same information as 25-day skew. Indeed, if one simply 
measures the correlation between tail risk and 25-day skew, it is positive i.e. greater tail risk 
leads to greater positive skew. Given these facts, it is clear that while tail risk is telling us 
something important about the distribution of index returns, its power does not come from 
measuring asymmetry in returns.  

The second insight is that investors appear to demand compensation for the risk associated with 
greater negative monthly skew in index returns. Thus, higher moments do matter for asset 
prices. 

5. Conclusions   

Measures of the higher moments of low-frequency (i.e. monthly or quarterly) returns on stock 
indices or currencies or managed portfolios are important in a variety of contexts, including 
risk management, portfolio selection and asset pricing. But these moments are hard to measure 
due to the limited data available on low-frequency returns and due to the fact that the higher 
moments of low-frequency returns need bear little relationship to the higher moments of high 
frequency returns. 

In this paper we show how, under fairly general conditions, high-frequency (e.g. daily) returns 
can be used to estimate low frequency skewness and kurtosis with impressive precision. This 
precision is demonstrated via a set of simulation experiments in which returns are generated 
from a few popular data generating processes (e.g. a Heston model and a GARCH model).  

The analysis demonstrates that the skewness of low frequency returns has two components, the 
skewness in high-frequency returns and the covariance between lagged returns and current 
squared high-frequency returns (i.e. the leverage effect). Empirically, the latter is shown to be 
much more important than the former when measuring the skewness of annual or monthly US 
stock index returns using daily data. Low frequency kurtosis has three components. These are 
the kurtosis of high-frequency returns, the correlation between lagged returns and current cubed 
high-frequency returns and the correlation between lagged and current squared high-frequency 
returns. The last of these, which we call the GARCH effect, is the dominant contributor to the 
time-series variation in low frequency kurtosis in US stock index returns. Thus, we show, both 
analytically and empirically, that information on high-frequency skewness and kurtosis is close 
to irrelevant when it comes to measuring low frequency skew and kurtosis. Low frequency 
moments are instead driven by the dynamic relationships between (powers of) past high-
frequency returns and (powers of) current high-frequency returns.   
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Table X: forecasting market returns with tail risk and skew 

Estimates from regressions where tail risk and monthly skewness are used to forecast US stock index returns at various horizons. All regressions are estimated using OLS 
with standard errors estimated using the Hansen-Hodrick procedure (to account for the overlap in the dependent variable when using annual, 3 year or 5 year returns). 

 

 

 

 

  

 1 month 1 year 3 years 5 years 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Constant 6.033 6.031 5.827 5.853 5.556 5.546 5.304 5.298 

t-stat 2.692 2.699 3.218 3.287 4.387 4.430 5.548 5.657 

Tail 5.030 6.722 4.251 5.643 3.832 3.694 3.122 3.065 

t-stat 2.393 3.100 2.489 3.351 3.836 3.663 5.681 6.309 

Skew  -4.230  -3.418  0.323  0.132 

t-stat  -2.317  -2.843  0.558  0.275 

R2 0.009 0.014 0.066 0.103 0.208 0.209 0.281 0.281 
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Finally, we demonstrate the utility of our low-frequency moment measures by investigating 
the ability of monthly skewness to forecast stock index returns. We show that, in a model 
including both skewness and the tail risk measure proposed by Kelly and Jiang (2014), monthly 
skewness is a significant negative forecaster of monthly and annual index returns. Thus the 
more negative is monthly skewness, the larger are expected monthly and annual returns. As 
Kelly and Jiang (2014) show, finding a risk measure that retains significance when used 
alongside their tail risk measure is unusual and in our case the improvements in explanatory 
power contributed by skewness are impressive. Thus, when measured correctly, low frequency 
moments do correlate with future mean returns, implying that investors are sensitive to the 
asymmetry in low-frequency return distributions. 
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APPENDIX 

Proof of Proposition 1 

The monthly price change is the sum of daily price changes so 
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  (18) 

Taking conditional expectations at time t-T, the last term drops out so 
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  (19) 

Taking unconditional expectations and rearranging terms 
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Now 
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Replacing expectations of products in (20) by covariances and products of means we get 
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  (22) 

Using the standard definitions of skewness and excess kurtosis, the result follows. 

Proof of Proposition 2 

Applying similar arguments to those used in the previous proof (algebraic decomposition, take 
conditional expectations, drop terms using the martingale property, replace conditional by 
unconditional expectations) we get 
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Substituting these into the definitions of vL, vE, s and k gives 
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  (24) 

With the definition of varL the first line gives the first part of Proposition 2. 

Note that r and y are independent, and both are mean zero so 

 [ ] ( ) ( )( )26 ln 3cov , .=E Eyr r y x r   (25) 

This together with the definition of skewness and the third line of equation (24) gives the 
second part of the Proposition. 

Finally, the fourth line of (24) gives 
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Now 
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Replace expectations of products by covariances, and products of expectations, substitute into 
the definition of kurtosis, and the final part of the proposition follows. 

 

 

 

 

 

 

 

 

 


