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Abstract

The aim of this paper is to construct a time-varying estimator of the
investors’ risk aversion function. Jackwerth (1996) and Aft-Sahalia and
Lo (1998) show that there exists a theoretical relationship between the
Risk Neutral Density (RND), the Subjective Density (SD), and the Risk
Aversion Function. The RND is estimated from options prices and the SD
is estimated from underlying asset time series. Both densities are estimated
on daily French data using Hermite polynomials’ expansions as suggested
first by Madan and Milne (1994). We then deduce an estimator of the Risk
Aversion Function and show that it is time varying.

Résumé
Nous construisons dans ce papier un estimateur variant avec le temps

de la fonction d’aversion au risque d'un investisseur. Jackwerth (1996) et

Att-Sahalia et Lo (1998) montrent qu’il existe une relation théorique entre

la densité neutre au risque, la densité subjective et la fonction d’aversion
au risque. On estime la densité neutre au risque a partir des prix d’options

et la densité subjective & partir d’une série chronologique du sous-jacent.

Chaque densité est estimée en données quotidiennes sur le marché francais,

en utilisant a la suite de Madan et Milne (1994) des expansions en polynémes
d’Hermite; on en déduit alors un estimateur de la fonction d’aversion au
risque pouvant varier dans le temps.
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1 Introduction

An important area of recent research in finance is devoted to the information
content in options prices that can be obtained in estimating implied Risk Neutral
Densities (RND). Whereas this density gives informations about market-makers
expectations concerning the future behavior of the underlying asset, it does not
allow to infer anything related to investors’ risk aversion. In return, there exists
a relationship between the risk neutral density, the subjective density (SD) and
the risk aversion function.

Although this theoretical relationship is well known, few works have been
interested in the topic in an empirical framework. To our knowledge, the two
major studies which deal with are those from Jackwerth (1996) and Ait-Sahalia
and Lo (1998). On the one hand, they estimate the RND from options prices and
on the other hand they estimate the SD from time series of the underlying asset.
By comparing both densities, they conclude that risk aversion is time varying.

Following Jackwerth, and Ait-Sahalia and Lo, we extract both densities (RND
and SD) and show that investors’ risk aversion function is time varying. The
contribution of this study is twofold: first, we investigate French dataset, and
second we estimate the model at a daily frequency.

With regard to the RND, in addition to seminal work on options pricing by
Black and Scholes (1973) and Merton (1973), we may cite Breeden and Litzen-
berger (1978) who first found a relationship between options prices and the risk
neutral density. Nevertheless their method requires a big range of strike prices;
over the past few years, a whole literature has looked into the problem of esti-
mating the RND of the option’s underlying asset. We may mention stochastic
volatility models such as Hull and White (1987), Chesney and Scott (1989) or
Heston (1993); to the latter Bates (1991 and 1996) adds a jump process in the
asset return diffusion. Madan and Milne (1994) and Jarrow and Rudd (1982)
respectively approximate the RND by Hermite and Fdgeworth expansions. Ru-
binstein (1994), Dupire (1994) and Derman et Kani (1994) suggest to use implied
binomial trees. Bahra (1996), and Melick and Thomas (1997) assume lognormal
mixture for the RND. Ait-Sahalia (1998) uses kernels estimators of the RND.
Lastly we refer to Campa, Chang and Reider (1997), Jondeau and Rockinger
(1998) or Coutant, Jondeau and Rockinger (1998) for a comparison of several
methods of extracting the RND from options prices on a particular event.

Section 2 first presents a brief review of the investment’s theoretical foun-
dations in an economy with a single consumption good, second it describes the
traditional Black and Scholes model and explains why this model is too far from
reality. Section 3 describes the model that used: Hermite polynomials approxi-
mations and shows how we estimate the risk neutral density using options and
the subjective density using underlying time series. Finally Section 4 first de-
scribes the dataset and analyses statistical properties, second explains which
optimization’s proceeds are used to estimate the models and third studies results



on French daily dataset. Section 5 concludes. Technical results are detailed in
the Appendix.

2 Methodology

2.1 Implied risk aversion

The basic investment choice problem for an individual is to determine the optimal
allocation of his wealth among the available investment opportunities. We stand
in a standard investment theory (see Lucas (1978)). There is a single physical
good S which may be allocated to consumption or investment and all values are
expressed in term of units of this good; there is a risk-free asset, i.e. an asset
whose return over the period is known with certainty. Any linear combination of
these securities which has a positive market value is called a portfolio. It is as-
sumed that the investor chooses at the beginning of a period the feasible portfolio
allocation which maximizes the expected value of a Von Neumann-Morgenstern
utility function for the end-of-period wealth. The only restriction is the budget
constraint. We denote this utility function by U(.), and by Wy the terminal value
of the investor’s wealth at time T". It is further assumed that U is an increasing
strictly concave function of the range of feasible values for W, and that U is
twice-continuously differentiable. The only information about the assets that is
relevant to the investor’s decision is the density probability of Wo.
In addition, it is assumed that:

Hypothesis 1 Markets are frictionless: there are no transactions costs nor taxes,
and all securities are perfectly divisible.

Hypothesis 2 There are no-arbitrage opportunities in the markets. All risk-free
assets must have the same return between t and 'I'. This return will be denoted
by (1) and is assumed to be known and constant.

Hypothesis 3 There are no institutional restrictions on the markets. Short-
sales are allowed without restriction.

As Ait-Sahalia and Lo (1998) write it, the equilibrium price of the risky asset
Sy at date ¢ with a T-liquidating payoff U(Wr) is given by:

St = EU(Wr)Myr], (1)
_ UMW)
Mt,T - m; (2>

under the true probability, where M, is the stochastic discount factor between
consumptions at dates ¢ and T



In equilibrium, investor optimally invests all his wealth in the risky stock for
all t < T and then consumes the terminal value of the stock at T', Wr = Sr.
If we notice by p(.) the subjective density (SD) of Wr, we may rewrite (1) as:

S, — /OOO\IJ(WT)%p(WT)dWT

e TMT-D / T(Wr)g(Wp)dWr
0
e DT B [W(Wy)]
with

M

Wr) = ==
q( T) fo Mt,Tp(WT)dWT

p(Wr) (3)

is called the state-price density or risk neutral density (RND) which is the equiv-
alent in a continuous-time world of the Arrow-Debreu state-contingent claims in
a discrete-time world!.

A way to specify the preference ordering of all choices available to the investor
is the risk-aversion function. A measure of this risk-aversion function is the
absolute risk-aversion function A(.) of Pratt and Arrow (see Pratt (1964)) given
by:

_U//(S)

A(S) = sy ()

By the assumption that U is increasing (U'(S) > 0) and strictly concave (U”(S) <
0), function .A(.) is positive; such investors are called risk-averse. An alternative,
but related measure of risk aversion is the relative risk-aversion function:

R(S) = ;ﬂé‘? s (5)

Irom (3), we can deduce than the ratio ¢/p is proportional to M;r and we
can write:

Q(ST)
p(St)

where 6 is a constant independent of the level of S.
Differentiating (6) with respect to Sy leads to:

U'(Sr)
0(S) (6)

C(ST) - - QMt’T — 8

8 (ST)

=)

I Recall that Arrow-Debreu contingent claims pay $1 in a given state and nothing in all other
states.



and

¢(5r) _ U"(Sr)
¢(St) U'(St)

= A(S7).

We then may calculate A(.) as a function of p(.) and ¢(.) and we easily obtain an
estimator of the absolute risk-aversion function, which does not depend on the
parameter 6:

P(Sr)  d(57)
p(Sr)  q(Sr)’

At this stage, we need to specify a general form for the utility function and

A(Sr) =

(7)

we add the following hypothesis:

Hypothesis 4 We stand in a state in which investors have preferences charac-
terized by Constant Relative Risk Aversion (CRRA) utility functions (see Merton
(1969, 1971)). Those functions have the following general form:

Us) = fi;,UA%l 8)
AS) = %, ©
US) = In(S), ifr=1

1

5

: (10)

where A be a nonnegative parameter representing the level of investor’s risk aver-
st0N.

An estimation of the parameter A will directly give us an idea on the investors’
risk aversion level. Once one has supposed a form for the utility function, he
must specify a model to extract subjective density p and risk neutral density
q. In order to study investor’s reactions across time, the risk aversion is to be
time-varying. So we replace all previous notations by pe, ¢, A and Ay where ¢
denotes all dates of our dataset. In the next section, first we give an example
using the traditional Black-Scholes model, second we explain why Black-Scholes
model does not correspond to reality and third we present an extension of Black-
Scholes model: Hermite polynomials model which allows for more properties of
the data.

2.2 Hermite polynomials expansion vs Black-Scholes

Now, we wish to develop the method for a traditional option pricing model.
We have to keep in mind that we need to estimate subjective density p; and
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risk-neutral density ¢; at each date and then extract parameter \; from these
estimations.

A large part of the literature concerning options pricing is based on the Black
and Scholes (1973) model. Assets returns are lognormally distributed with known
mean and variance. The underlying asset S;, ¢ < T" follows a Brownian diffusion:

dSt = /,LtStdt —I— O_tStthu (]_]_>

where W, is a Brownian motion under the subjective probability, y, is the rate of
return of S under the SD and o is the volatility; both are supposed to be constant
for a certain date ¢. Harrison and Kreps (1979) show that when hypotheses (1) to
(3) hold, there exists a unique risk neutral probability equivalent to the subjective
one, under which discounted prices of any asset are martingales. Under this
equivalent probability, the underlying asset price S; is distributed as following:

dSt = (Tt — dt)Stdt —I— O_tStth*u (12>

where W} is a standard Brownian motion under the risk neutral probability, d;
denotes the implied dividend at time ¢ and o, is the volatility which appears to be
the same than under the true probability. In the Black-Scholes model, asset price
St follows a lognormal under both probability?. Risk Neutral Density (RND),
q£%(S, 0¢) and Subjective Density (SD), pP®(S, oy, p1,) only differ in mean and are
given by:

BS
S, o, = ex
P (5,01 1) oI —t\/27S P 203(T —t)

! ' <1n<s>—mt<ut>>2]7 13

(500 = 1 o _<1n<s>—mt<m—dt>>]7 14)

ooV T — 1218 20¢(T = 1)

where

1
my(z) = In(S;) + <a: - 50?) (T —1).
By replacing (13) and (14) in (7) and under hypothesis (4) we directly obtain:

— (r — dt)‘

AP (8) = H— (15)

2 Applying Ito’s formula to In(S;) and (11) gives us:

dIn(S:) = d?it + % <;—21> var(dS:)dt = (u — %02> dt + odW,
t



An estimation of parameters p, and o, allows us to estimate absolute risk
aversion function when the underlying follows (11).

Black and Scholes is based on the fundamental hypothesis that volatility is
deterministic, skewness and excess kurtosis are nul. Those hypotheses have been
widely reconsidered on the last few years, owing to the fact that option price
at maturity is very sensitive to the underlying asset’s distribution specifications.
Figure 2 shows typical volatility smiles for two dates, May 1995, 5", date that we
can call agitated, and July 1996, 25", date that we can call flat: we observed that
implied volatility at date ¢ is constant neither in strike price neither in maturity;
volatility is higher for small strikes, which means that market makers will pay
more for a call option on a smaller strike: this feature will appear in the density
with a presence of asymmetry; volatility smile for the second date is very U-shape:
we will notice a kurtosis effect in the density.

We impose another model for the underlying which allows for skewness and
kurtosis. Following Madan and Milne (1994) and Abken, Madan and Ramamurtie
(1996), we adopt an Hermite polynomials approximation for the density. Their
model operates as follows.

First, we add the following hypotheses to hypotheses (1)-(4):

Hypothesis 5 The sct of all contingent claims is rich enough to form a Hilbert
space that is separable and for which an orthonormal basis exists as a consequence.
The markets are assumed to be complete.

Hypothesis 6 Abken, Madan and Ramamurtie suppose that under a reference
measure, the asset price evolves as (11), i.e. as a geometric Brownian motion.
Then S; can be written as:

St = Spexp|(p, — %U?)(T — )+ VT —tz] (16)

where z follows a N'(0,1).

Madan and Milne (1994) assume than SD and RND may be written as a

product of a change of measure density and reference measure density n(z):

pit(z) = wl(e)n(z) (17)

G (2) = vil(2)n(z) (18)
where piFR(z) and gl'"®(2) are respectively subjective and risk neutral densities.
In our particular case n(z) will be a Gaussian distribution of zero mean and unit
variance.



A basis for the Gaussian reference space may be constructed by using Hermite
polynomials which form an orthonormal system for the Hilbert space®.

As we have carried out for the benchmark model, we wish to estimate time-
varying risk aversion function when supposing an Hermite polynomials expansion
for the density; therefore, we need to estimate both risk-neutral and subjective
densities. Next section is divided in two parts. In a first part, we give the way
to estimate risk-neutral model from options prices, and in a second part we show
how to use these estimated parameters as observed data to estimate subjective
model and extract ;.

3 Models’ specifications

3.1 Risk Neutral Model

To estimate implied volatilities risk neutral parameters we use options prices. A
call option (put option) is the right to buy (to sell) the option’s underlying asset
at some future date -the expiration date- at a prespecified price -the striking price.
This right has a price today that is a function of the option’s specifications. Since
under the risk neutral probability discounted prices are martingales, the current
option’s price may be written as the discounted end-of-period option’s payoff
expectation. If we denote by C.(t,S:, K,T), a Furopean call price of exercise
price K and maturity 7', we have:

C.(t, S, K,T) = ¢ DT / max [Sp — K, 0] ¢; (Sp) dS. (19)
0

As CAC 40 options are American style options, we introduce the approach
developed by Melick and Thomas (1997) to price American options. They show
that the option’s price could be flanked by two bounds representing minimal
and maximal value of the price. This method can be applied to any stochastic
processus if we know the shape of the future underlying’s distribution. If we can
bound the option’s price, we will be able to write it as a weighted sum of the
bounds. The idea of the method comes from the martingale’s hypothesis of the
underlying asset under the risk neutral probability. Low and high bounds for an

3Hermite polynomial of order & is defined as follows:

(—=1D)*%n(2) 1
VE 928 n(2)’

+0o0 =0ifj
<onty o= [ aoeneae={ 227

— o0

dr(2) =



option call are given by:

C' = max [E(Sr) — K,r(1)Cu(t, Se, K, T))] (20)
C! = max|E,(Sr) — K, r(T)CL(t, Sy, K, T)], (21)

then the price C,(t,S;, K,T) of an American call can be written as:

Co(t, S, K, T) = wiCF + (1 —w)C}if By(Sr) > K
Ca(t, St; K,T) = UJQC;L + (1 - U)Q)Cé if Et(ST) < K. (22>

Let CHER(¢ Sy, K, T, 0y,07) be the price of a European call of strike K and
maturity 1" where 6 denotes the vector of parameters that describes the risk
neutral density. Under hypotheses(1)-(6), CT*R (¢, S;, K, T, 0¢,0}) is given by:

CHER(1, S, K, T,07) = e mMDT-D / (Sp— K)" GER (2,04,07) dz
0

“+o00

= e T Z g, tbr ¢ (23)

k=0

where St is given by (16) and by definition of a basis:

= [ (Sieplln - ST~ 0+ o VTl - K ) lonlalds (20

o0

and by, k = 1,2,... represent the implicit price of Hermite polynomial risk ¢y, (2)*
which need to be estimated so that 67 = (bos,b14,...).
The derivation of expression (23) can be found in Appendix.

Replacing in (18) gives the RND of z:

g, (2, 01,0 Zbk 195 (2 (25)

For a practical purpose, the sum is truncated up to an arbitrary order L,.When
the sum is truncated up to an order L, then the density (25) may lead to some
negative values for some given by, k = 0,1,...L;. Balistkaia and Zolotuhina
(1988) give the positivity constraints when I, = 6 and Jondeau and Rockinger
(1999) give an ingenious way to implement positivity’s constraints when L, = 4.

4The Hermite polynomials through the fourth order are:

bo(2) = 1, 64(2) = 2, 6y(2) = %(z? —1)

—
N
[N

N’

¢3(2) = —=(2% = 32), ¢4(2) = —= (2" — 62" + 3

8-
D
[\>)
M



For simplifications reasons and since we only need moments up to the fourth
order, we restrict our model to L, = 4. Madan and Milne (1994) then show that
the risk neutral density of the future underlying asset can be written as:

qzlt{ER(Suo_tuez) :qu(S,O})PH(T]), (26>
where
bot | 3bay 3b3,¢ bot  6bar, o b3t 5 bax 4
P :b __’_l__’_l_b 9 _|__’_ ’ i)l + ’
H(n) 0,t \/§ \/ﬂ ( 1t \/é )7] (\/§ \/ﬂ)n \/67] \/ﬂﬁ
@27
1I1(S) - |:1I1(St) + <7"t - dt - %O’?) (T — t>:|
n= : (28)
Ot T—1
and ¢°%(9, o) is given by (14).
One can choose to estimate by, K = 1,...,4 or follow Abken, Madan and

Ramamurtie (1996) by imposing by = 1, b1y = 0, by = 0 and estimate oy, b,
and by, only (See Appendix for technical details on restrictions on boy, by, boy
and positivity constraints on bs; and byy).

We wish in the next section to estimate the subjective density, in order to
compute the absolute risk aversion function (7).

3.2 Subjective Model

To estimate the SD, we discretize equation (16) after applying Ito’s lemma which
straightly gives us:

1 e
T(k+1)Ar = TpAr T <Mm7 - §U§AT> AT + Opar VATER 1A, (29)

where zxar = In(Skar) and A7 is a time discretization step (A7 = 1/260 for
daily data), kAT, k =1,..., N are the dates of discretization with 7 = NA7. For
example, if data are daily, 7 will equal one year. After a change of probability

e(k+1)ar Will have the following distribution piar(z):

3/b\4 kAT 333 kAT 6/6\4 kAT /b\3 kAT /b\4 kAT
PEER () = n(2) |1 20T T, et T 4
pkAT( ) ( ) \/ﬂ \/é \/ﬂ \/é \/ﬂ

(30)

The general idea of the method is that parameters o, /b\3’kA7— and 64,;@7
are the same than those estimated in the previous section for the date ¢ = kAT
because they are invariant when we switch from risk neutral world to real world.
So we can consider them as observed variables. The only parameter to estimate
is the drift pa,; to allow this latter to vary across time, we can write it as:

Peinar = o+ aappar + B€ginar, (31)
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where oy, @y and 3, are to be estimated.
Once we have estimated ji5,, the subjective density piki(S,0), where 6
denotes the vector of parameters to be estimated, that is o, cyand 3;, of Skar

is known and is given by:

HER BS ~ 4, kAT 3, kAT 4. kAT 9 3,kAT 3 4. kAT 4
2 (5,0) = (S, 0rat, 1 , ; ) ; ;
P ( ) Pra ( kAt Hgpa ) /—2 \/é n /—2 n \/é n /—2 n

where 7 is given by

= In(S) = [In(Skar) + (rar — 305ar) AT]
8k)AT V AT 7

and pERT(S7 b\_kAT; /’[’kAT) 18 given by (]—3>
The risk aversion function for Hermite polynomials model is then given by:

HER/ HER/
HER Y A C)) 4% (S) ﬁ
AT TS s

(32)

Analytic form of those functions are given in Appendix.

4 Results

4.1 Data description

We consider the case of the CAC 40 index® and short time-to-maturity CAC 40
options®.

The whole database has been provided by the SBF-Bourse de Paris (Société
des Banques Frangaises) which produces monthly CD-ROMs including tick-by-
tick quotations of the CAC 40 caught every 30 seconds, and all equities options
prices quoted on the MONEP tick-by-tick. The database includes time quotation,
maturity, strike price, closing and settlement quotes for all calls and puts and
volume from January 1995 through June 1997. Short maturity CAC 40 options

prices need to be adjusted for dividends. Ait-Sahalia and Lo (1998a) suggest to

°CAC 40 index leans on the major shares of Paris Stock Market. It is constructed from
40 shares quoted on the monthly settlement market and selected in accordance with several
requirements (capitalization, liquidity,...). CAC 40 is computed by taking the arithmetical
average of assets quotations which compose it, weighted by their capitalization.

6CAC 40 options are traded on the MONEP (Marché des Options Négociables a Paris).
They are american type and there are four expiration dates for each date: 3 months running
and a quarterly maturity among March, June, September or December. Two consecutives strike
prices are separated by a standard interval of 25 basis points.
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extract an implied forward underlying asset F; using the call-put parity on the
at-the-money option which requires that the following equation holds:

Catm - Patm = ein(T)(Tit)(Ft - Katm) (33>

where Chim, Pam and K, respectively denote the price of the call, the price of
the put and the strike at-the-money. Once we have obtained F;, we may deduce
the implied dividend d(T") at time ¢ for a maturity 7" using the arbitrage relation
between F; and S;

F, = rM)-dM)T-D g, (34)

Since CAC 40 options data contains many misspriced prices, once needs to
filter the data very carefully. First following Ait-Sahalia and Lo (1998a), we drop
options with price less than 1/8. Second, for our study, we kept the most liquid
maturity which usually appears to be the closest to 30 days yield-to-maturity.

Table 1 shows summary statistics of the CAC 40 index return historical dis-
tribution. Negative skewness and positive excess kurtosis show nonnormality of
historical distribution, implying a leptokurtic and skewed distribution. Statistic
W used by Jarque and Bera (1980) to construct a normality test allows to reject
normality at 95%.

The Tjung-Box (1978) statistic LB(20) to test heteroskedasticity rejects the
homoskedasticity for the square returns. The Tjung-Box (1978) statistic LB,.(20)
corrected for heteroskedasticity computed with 20 lags allows to detect auto-
correlation returns. Diebold (1988) suggests a Tjung-Box statistic corrected for
heteroskedasticity LB.. We notice that autocorrelation of squared returns is sig-
nificantly higher than autocorrelation of returns, which implies than large changes
tend to be followed by large changes, of either sign.

Table 1 : Descriptive statistics of the CAC 40 daily index return for the
period from January 1995 to June 1997. Table 1 shows several statistics describing
returns series: mean, standard deviation, skewness and excess kurtosis. LB(20)
is the Ljung-Box statistic to test heteroskedasticity. p(h) is the autocorrelation of
order h. LB.(20) is the Ljung-Box statistic corrected for heteroskedasticity for the
nullity test of the 20 first autocorrelations of returns. Under nullity hypothesis,
this statistic is distributed as x? with 20 degrees of freedom. W is the Jarque
and Bera (1980) statistic that allows to test for normality”.

"Jarque and Bera’s statistic is based on empirical skewness, sk ans kurtosis kt given by:

— LY @ea =T~ L (e =T
sk = — L Y —— L
N 3 N 3

where sk and kt represent, respectively the empirical mean and empirical standard deviation.
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01/1995 to 06/1997

Ty x?
Number of observations | 650 650
Mean 0.60 1072 | 0.99 104
Standard Deviation 1.00 1072 | 0.16 1072
Skewness —0.163 3.913
Excess kurtosis 0.928 21.205
LB(20) 26.740 49.166
p(1) —0.010 0.010
p(5) —0.081 —0.031
p(10) —0.033 0.092
p(20) —0.022 0.070
LB.(20) 26.692 25.182
%% 26.178 13836.563

4.2 Estimations’ procedures

A nonlinear least squares method is implemented to estimate risk neutral param-
cters. At each date ¢, the nonlinear least squared estimator (NLLSE) E;, ILSE =
{04, b34,ba¢, w1, woe,} is obtained so that it minimizes the distance between ob-
served and theoretical implied volatilities computed with Hermite polynomials’
model ( oP® for observed ones and of*® for theoretical ones):

R me

ﬂjVLLSE = arg min (Uz ot (ﬂ*)>2 ’ (35)

*eo*
s i=1

where m¢ denotes the number of observed call options at date t, ©* = (R*, D, [0, 1], [0, 1])

where D is the domain of (bsy, bs,) for which (25) remains positive for all z (see
figure 3).

Subjective model (29)-(31) is estimated by maximum likelihood method. The
log-likelihood function L of x = (x4, ...,Zyar)! is given by :

L(z; 8) = Z Liar(Zear) (36)

where Lia; 1s the log-likelihood function of zxa;.

We note by t; and %o, the following statistics:

—~2
sk
6

(kt — 3)2

ty=AIN
! 24

o= \/N

Under the nul hypothesis of normality, W = t% + t% asymptotically follows a x2(2).
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The maximum likelihood estimator (MLE), ﬁMLE = {p, 1,3} is obtained
so that it maximizes the following optimization problem®:

Brine = argmax|L(x; B)] (37)

where © = (R, R R).

To find the implied coefficient of risk aversion A, one can solve:

M HER/( G HER/( g A
A = min ptHER( ) _thER( ) ~ ), (38)
aers =\ pPH(SE) g PR(S) S
where M is a constant and S,,r = 1,...,M is a range of points around the

underlying at date ¢, S;.

4.3 Empirical results

In this section, we analyze empirical results.

In figure (4a)-(4b), we show two estimated risk neutral densities for the dates
May 1995, 5% with maturity of 56 days and July 1996, 25" with maturity 36 days.
The first one corresponds to a so called agitated date during French Presidential
Elections and the second corresponds to a quiet date. We notice that asymmetry
is higher for the first one.

The daily time series for the estimates of the parameters in a risk neutral
world are shown in figure (5a)-(6b).

We notice that implied volatilities given by Hermite polynomials’ model in fig-
ure (Ha) appear to be larger than those obtained from Black and Scholes model in
figure (5b) which seems to imply that Black-Scholes volatilities are undervalued.
The different picks at the beginning of the period may come from the fact that
CAC 40 options are much less liquid during 1995 than 1996. We turn to mar-
ket prices of skewness b3 in figure (6a); this latter is significantly different from
zero during the whole period. Parameter b3 gives some information about the
skewness of the distribution when parameter by gives information about the ex-
cess kurtosis which is significantly positive. The skewness appears to be negative
along almost all the period which indicates that investors anticipate a decrease
more often than an increase in the underlying index. We notice four agitated
sub-periods. The first one corresponds to French presidential elections of May
1995. The second one and the third one respectively in May 1996 and February
1997 are not as so clear and may be due to perturbation in U.S. market. The
latest is the French snap elections of May 1997.

During these period, market seems to be agitated which can be seen in the
kurtosis. It gives an idea about extreme events.

8Estimations have been done with the software GAUSS using Optmum routine.
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Figure 7 shows Mean Square Errors (MSE) of parameters’. All MSE appear
to be less than 8.1072, that is quite satisfying and confirms the choice of the
method. Other properties of the method is that it is computationally fast and it
may take into account possible dirty data. Empirical results of these properties
can be found in Coutant, Jondeau and Rockinger (1998).

In order to show the consistence of the model, we show in table 2 estimated
parameters of the model under the true probability when parameters are supposed
to be constant. Volatility parameter is higher than average volatility estimated
in a risk neutral world. Parameter b, is significantly different from zero which is
not the case of b;.

In table 3, estimation of model (29)-(30) is presented. All parameters appear
to be significant and the daily time series of estimated drift ppa., K = 1,..., N
from (31) with values of table 3 is given by figure 8.

g eeey

Table 2: Estimation of the model (29)-(30) when parameters (j1,, 04, b3 ¢, bas) =
(p,0,bs3,b,s) are supposed to be constant:

H o bs by

BS 0.192 | 0.161
(1.898) | (29.684)

Hermite | 0.186 | 0.159 —0.003 | 0.177
(1.708) | (29.247) | (—0.191) | (3.199)

Table 3: Estimation of the time varying drift g, in (31):

Qg ‘ aq ‘ b1
—0.113 | 0.481 | 0.296
(—3.163) | 2.177 | 5.067

Figure (8) shows Absolute Risk Aversion functions for several days. First date
is February 1995, 28", and CAC 40 moderately rose during this month: implied
risk aversion coefficient \; = 4.999 is rather high. Second date is April 1995, 28,
the index improved since mid-March and \; = 1.051. The date July 1996, 15"

9MSE at date ¢ is calculated as follow:

Me

MSE, = — Z(U?S—U?ER(BA?))Q,

Me — m@ =

with the notations used in (35), mg is the number of parameters to estimate and §; is the
vector of estimated parameters at date .
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sees a short drop of the CAC 40, A\; = 11.404 is very high. Finally last date takes
place on the November 1996, 13"* during a significant growth of the underlying
and Ay = 3.103. We may conclude from these observations that investor’s risk
aversion substantially depends on the index’s evolution. When CAC 40 goes up,
investors have a moderate risk aversion, even they are nearly risk neutral for
November 1996, 132,

Figure (9) represents the risk aversion level obtained with (38).

5 Conclusion

In this paper, we have empirically investigated investors’ risk aversion coefficient
implied in options prices. We showed that this latter could be estimated by
the knowledge of a combination of information under risk neutral and subjective
probabilities.

We have focused on CAC 40 index options, and we have supposed CRRA
utility functions and an Hermite polynomial expansion for risk neutral and sub-
jective densities. This model has the advantage to give directly the skewness
and the kurtosis in addition to numerical properties. We first estimated Hermite
polynomials’ model under a risk neutral probability using options prices, and sec-
ond injected risk-neutral parameters obtained in an equivalent discretized model
under a subjective probability. We then used time series of the CAC 40 index
to estimate the subjective density. A relation between densities and their deriva-
tives allowed us to compute all absolute risk aversion functions on the period from
1995 to 1996. Risk aversion function appeared to be time varying and investors’
risk aversion is very sensitive to the way underlying asset evolutes. Risk Aversion
coeflicient is a good tool to test market-makers reactions to particular events or
announcements.

Some future studies could turn on comparing results from several investor’s
preferences choices and another kind of risk, so that volatility risk for example.
In a future research, we will focus on modelling the risk aversion coefficient in
order to forecast the true density.
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Appendix

Compute derivatives p=%(s) and ¢#®/(s) :
HER/ _ 1 ox _1 In(S) — m;‘>2
A = e | < (R By
5 _ _Pu()  Pa(n) W(S)—mi  Qu(n)
S SUt\/T—t O't\/T—t SO't T—1

1
m: = ln(St) —I— <7"t — dt — 50?) (T — t),

where Py (.) is given by (27), n is given by (28) and

Sb t 4b t
Qu(n) = j(—’; (=1+79%) +ﬁ (n*> —3n).

To obtain p™(S) just replace m} by:

ms = In(S;) + <ut — %0?) (T —t).

European call in the Hermite polynomials basis:
The price of a European call is given by (19)

QMW&KI@rw”m””/<%—Kﬁf“@mwMz
0

oo 1 +
— o (DT 1) / <St expl|(ry — dy — 50?)(T — )+ o VT —tz] — K> thER (z,00,00) dz
0

00 1 N
= ¢ (DT / <St exp|(ry — dy — 503)(T —t)+ o VT —tz] — K> vz, 0p)n(z)dz.
0

All functions can be expressed in terms of the basis so that:

<st exp|(ry — d; — %af)(T —t) 4+ o VT — tz] — K> = appi(2)

+oo
vi(z,07) = Z bjr9;(2),
=0
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then

oo oo +oo
CHER(1. S, K, T,07) = 6m(T)(Tt)/ Zak,@k(z) ij,@j(z)n(z)dz
0 r—o §=0

400 +oo

SR ) ST R NCTHEHIEEE
0

k=0 7=0
“+o00

= TN g
k=0

Parameters qy,:
Coeflicients ay ¢ for the call price are given by:

O P (u, So,a:,u,o,t)J 1
8uk UZO\/H
B(u, S0, 11,0,1) = Soexp(t + VEIN(dy(w) — 2N (d(w)  (40)

ape = a(k, So,z, p,0,1) =

Explicitely ay ¢ are given as follows:

1 1
di = ———In(F)+=0VT — 1, do=dy — oVT — ¢,

ape = FiN(d) — KN(dy),
ar, = ovT —tFN(dy) + Fn(dy) — Kn(ds),

a3, = J% l(ox/ﬂ)QFtN(dl) 420/ T — tFn(dy) + Fun(dy) — Kn’(dQ)l ,
a3, = %{; l(ox/ﬂ)3 FN(d)) +3 (am)Q Fon(dy) + 30T — tFn/(dy) + Fn"(dy) — K

V24

where n(.) and N(.) are the normal and cumulative normal densities.

U [ (0T = 1) FuN(d) + 4 (ov/T — 1) Fen(dy) + 6 (ov/T — 1)” Fen(dy) 1
Lt 40T — tFn'(dy) + Fmn®(dy) — Kn® (dy) ’

Restrictions on parameters b,,, b, and b,,:
Let n be:
- ln(ST) - |:1I1(St) + <Tt - dt - %U?) (T — t)i|

Nr = oy T _¢ ’
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the risk neutral distribution of 1, is:

¢ (2) = n(2) Pu(2),

where Py(.) is given by (27) and n(z) is the Gaussian distribution with mean 0

and variance 1.

@R (2) must satisfy:

which implies that

+oo
byt  3bay 3b3.4 byt  6Obyry o b3t 5 bap 4
bost — —= + == + (b — —= )z + + + =z dx=1
/ ()lw V2 VA (B f) <f V24 1 VGGl

[t 2 - ot -

b()’t - 1,

o0

for all t.
We also want to impose that the future underlying asset’s expectation equals
the current future price, that is:

Et(ST) = Ste(midt)(Tit) <~ Et(nT) = 0

+oo
/ 2q M (2)dz = 0,

o0

which gives the restriction for parameter by 4:

Too th 3by 3631& bat  Bbay bs ¢ .3 big 4 _
/ zn(z)lbo,t L T (= )+ (B T Sy D s

/ j n() [(zn,t Tty 15z

bl,t = 07

o0

for all t.
Finally, third restriction comes from variance which is imposed to be the same
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under the transformed measure than under the reference measure:

+oo
|2 =

Heo b 3b 3b b 60 b b
z2n(z) [bo 2t 4t (bl 3t> ( 2t 4t> —I— 3,tz3 %
/. BT R Y VRV TUIN
YOV bu]dzzl

[0 [ eyl Oy g

/; ()[1%—2(%)1@:1
by = 0,

for all ¢.

Positivity’s constraints on parameters b;,, by, :
Let 7, and 7y, be the skewness and excess kurtosis respectively. A straightly
calculus leads to:
+o0

o= / ST (2)dz = /obs, (42)

o0

+oo
Yy = / AR (2)dz — 3 = V24D, (43)

o0

Then (25) can be rewritten in terms of 7, and 7s:

G200, 07) = n(2) |1+ () + 22 Ha(2)]

where H;(z) = 1/j1¢;(2) is the non standardized Hermite polynomial of order j.
Density (25) remains positive when

Py(z) =1+ %Hg(z) v ;iH4( ) > 0.

Jondeau and Rockinger (1999) explain that this is the case if a couple (74,7,)
lies within the envelope generated by the hyperplane Py(z) = 0, with z € R.
This envelope is given by the system

Py(z) =0,
{ 0 (1)

with



They find that solving the problem gives explicitly v, and v, as a function of

o Hs(2)
_ o Ha(2)
with

d(z) = 4H}(2) — 3Ha(2) Hy(2).
After some demanding calculus, Jondeau and Rockinger (1999) find numer-

ically and analytically that the authorized domain for 7, and 7, is a steady,
continuous and concave curve. The domain for b3 and b, is given by figure 3
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Captions

Figure 1a: Daily CAC 40 index over the period January 1995 to July 1997.

Figure 1b: Daily CAC 40 index returns over the period January 1995 to
July 1997.

Figure 2a: CAC 40 volatility smile for the date 05/05/1995 and the maturity
56 days.

Figure 2b: CAC 40 volatility smile for the date 25/07/1996 and the maturity
36 days.

Figure 3: Domain authorized by the skewness and the kurtosis for positivity
constraint of an Hermite polynomials’ density

Figure 4a: Risk neutral density for the CAC 40 computed with Hermite
polynomials for the date 05/05/1995 and the maturity 56 days.

Figure 4b: Risk neutral density for the CAC 40 computed with Hermite
polynomials for the date 25/07/1996 and the maturity 36 days.

Figure 5a: Estimation of parameter o; in Hermite’s model under the risk
neutral probability.

Figure 5b: Estimation of implied Black’s volatilities under the risk neutral
probability.

Figure 6a: Listimation of parameter bs; in Hermite’s model under the risk
neutral probability.

Figure 6b: Estimation of parameter b,; in Hermite’s model under the risk
neutral probability.

Figure 7: Mean Squares Frrors for the estimation of risk neutral parameters
in Hermite’s model.

Figure 8: Graphs of implied absolute risk aversion functions for the dates
28/02/1995, 28/04/1995, 15/07/1996 and 13/11/1996.

Figure 9: Implied risk aversion’s coefficients for the period January 1995 to

July 1997.
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Figure 1a: daily CAC 40 index
over the time period January 19395 to July 1997
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Figure 1b: daily returns on the CAC 40 index
over the time period January 1995 to July 1997
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parameter b3 estimated in Hermite polynomials’ model

over the period 01/01/1995 to 30/06/1997

Figure 6a:

a.8

0.4

0.2

-0.0 [

-0.2 [

-0.4 1

-0.6

-0.8 [

| ¥090/661

_| 20c0/661

| £0v0/661

| ¥0c0s661

| ¥0cas661

| eal0/661

_| vOCl9661

JsoLlgeel

| €acla66!

| S0609661

| 90809661

| 60£09661

| 11909661

| 60509661

| 60¥09661

_| 80<09661

_| 60209661

11109661

| L0C1G661

| 80L1G66L

J 0lOLS661

L 1605661

| 60806661

| G040G661

| 90905661

- ¥0S05661

| 62<0S661

| 82205661

L€10S661

¢0105661

2

Figure 6b: parameter b4 estimated in Hermite polynomials’ model

over the period 01/01/1995 to 30/06/1997
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Figure 9: A estimated with Hermite polynomials
over the period du 01/01/1995 au 30/06/1997
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