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Abstract

Nous �etudions dans cet article de nouvelles solutions num�eriques,

bas�ees sur la technique de r�esolution de l'�equation de la chaleur par

s�eries de Fourier. Nous consid�erons, entre autres, plusieurs options,

pr�esentant des caract�eristiques asiatiques, des clauses d'exercice an-

ticip�e et des clauses barri�eres, �ecrites sur un sous-jacent lognormal

versant des dividendes discr�etes et un taux continu de dividendes. Une

fois �enonc�es les r�esultats g�en�eraux, nous nous int�eressons au probl�eme

caus�e par l'existence de basses volatilit�es et d�emontrons son impor-

tance pratique. En�n, nous exposons le mode de construction d'un

arbre de Cox �a pas de temps variable, nous montrons comment la tech-

nique sus-mentionn�ee peut être utilis�e conjointement �a la technique de

Fourier pour �evaluer des options bermud�eennes complexes et obtenir

a temps de calcul �egal des prix plus justes.

Abstract

We �rst investigate new numerical solutions, based on the Fourier

expansion heat equation solving technique, of numerous path depen-

dent options written on lognormal assets paying discrete or continu-

ous dividends. The foundations of the article having thus been laid,

we give a rather general account of barrier options pricing with low

volatilities, and explain why this issue has to be addressed. After

having described how one can build multiple time-step Cox trees, we

show that, using the Fourier technique together with the muti-time-

step tree technique, one can drastically improve the level of accuracy

when computing the price of simply path-dependent Bermudan barrier

options.
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Introduction
Barrier options are now widely used. Less costly than the equivalent plain

vanilla options, they allow the singling out of a given risk and the correspond-

ing hedging. However, computing the fair price of a barrier option is far more

di�cult than computing the fair price of its standard equivalent. Apart from

the time consuming numerical simulations and the usual trees, the pricing

schemes available today for valuing these options are: an extended Black

& Scholes formula limited to single barrier options and a couple of recently

deviced models o�ering some guidance for pricing double barrier options.

The two main drawbacks of these models are that they are limited to strictly

European options written on stocks paying a continuous dividend yield and

that they do not o�er a framework which allows for more general barrier

clauses than the double knock out one.

The aim of this paper is to describe a general framework which provides al-

most real time prices for simply path dependent Bermudan multiple barrier

options, written on stocks paying discrete or continuous dividend yields.

The main mathematical tools used in this paper are the Fourier expansion

heat equation solving technique and the classical change of variable through

which the Black & Scholes PDE reduces to the heat equation.

The present paper is organized as follows:

In the �rst part of the paper we recall how the classical Fourier expansion

technique can provide simple and CPU friendly solutions to the double barrier

option pricing problem and we show how discrete dividends can be accounted

for in this framework.

In the second part of the paper we show how our method can easily be ap-

plied to price simply path dependent options and truly complex options with

combined multiple In and Out barriers.

In the third part of the paper we summarize the problems that may arrise

when the underlying asset volatility reaches low levels and we o�er some

guidance on how to address those issues. Furthermore, we show how this can

be done in a single coherent framework.

In the fourth part of the paper, we explain how a multi-time-step Cox tree

can be built and we demonstrate how the Fourier expansion technique should
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be combined with the so built-multi-time step Cox tree to obtain close to

real time pricing and hedging solutions for those Bermudan claims that typi-

cally cannot be priced by any other method than the Cox tree discretization

scheme | i-e. �nite di�erence method.

Finally we carry out a numerical study on a fairly commonly traded asset:

we give the price obtained with our technique, the price obtained with the

usual Cox tree method and the limit tree price assumed to be true as well as

the various computational times.

1 The Fourier expansion technique

1.1 Notations & Well know results

Throughout the paper:

� We place ourselves in a no arbitrage world and suppose given a risk free

continous interest rate r and an asset volatility �.

�We denote by S the price of a stock following a piecewise lognormal process

with volatility �; there are dates T0; T1; : : : ; Tn such that 8i 2 [0; n� 1],

dS

S
= (r � d)dt+ �dWt

with d an eventually zero continous dividend yield.

� We denote by P the price of a contingent claim written on S with payo�

f(S) and maturity T .

It is a well known fact that P satis�es the Black & Scholes PDE :

@P

@t
+ (r � d)S

@P

@S
+
�2

2
S2

@2P

@P 2
= rP

Setting

� =
1

2
� r � d

�2
and � = �(1� �)2 � 2d

�2

and setting the variables

x = ln

�
S

Bd

�
and y =

1

2
�2(T � t)

where Bd is, for the time being, any non zero positive number, we obtain the

existence of a function � such that

P (S; t) = e�x+�y�(x; y) and
@�

@y
=

@2�

@x2
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1.2 The double barrier case

Let us now suppose that the contingent claim P pays a predetermined rebate

and vanishes whenever S crosses an upper barrier Bu or a lower barrier Bd.

Let Ru and Rd be these rebates. Set � = ln
�
Bu

Bd

�
.

Than 8x; y the function � satis�es the boundary conditions

�(x; 0) = f(Bde
x) and �(0; y) = Rde

��y and �(�; y) = Rue
�����y

We give the general solution of this equation in APPENDIX A. For the sake

of simplicity, we shall here proceed with Ru = Rd = 0. This restriction

is not motivated by theoretical considerations but adopted for the sake of

perspicuity. Hence:

P (S; t) = e�x+�y
+1X
n=1

 
2

�

Z �

0

f(Bde
u)sin(

n�

�
u)e��udu

!
sin(

n�

�
x)e�(

n�
� )

2
y

We give in APPENDIX B the value of the integral terms above when f is

either the payo� of a call or a put.

1.3 Accounting for discrete dividends

When trying to value, in the proability theory based framework, a contingent

claim written on a stock, one must assume continuously paid dividends. An

assumption harmless when dealing with plain vanilla options but which can

lead to large errors when one adds, for instance, a barrier clause.

Consider the case of a Down & Out option with maturity 1 year, written

on a stock paying in one month a 5% dividend. Taking the spot and the

strike both equal to 100, the barrier at 95, the risk free rate equal to 5% and

the stock volatility equal to 20%, the true price of the option is about 2:5

whereas the continuous dividend yield price would be 3:8.

We shall, in this section, show how discrete dividends can be accounted for

in the Fourier framework. Let T0 be a date at which the share S strips o� a

dividend and denote by a the ratio

a =
ST+

0

� ST�
0

ST+
0
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For example, if the share strips o� a 5% dividend then

a =
ST+

0

� 0:05ST+
0

ST+
0

= 0:95

A key assumption in what follows is that the value of a and the date T0 are

both deterministic. Set

y0 =
�2

2
T0 and y1 =

�2

2
(T1 � T0)

The trick is now to patch the option price at time T0. Indeed, although

the trajectories of the asset price are discontinuous, the trajectories of the

contingent claim price are continuous as the dividend yield paid is supposed

pretedermined | and therefore has been accounted for in the option price

since the beginning of its life. Consequently at date T0

P (S; T�
0
) = P (aS; T+

0
)

This very simple matching relation is the key to all that follows. Graphically:

Bd

0

S
aS

Bd
a 0

t=0 t=T t=T

(S)ff(S)
0

Bu
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Let f0(S) be the price at time T
�

0
of the contingent claim P . Therefore

f0(S) = P (S; T�
0
) =

(
P (aS; T+

0
) if S > Bd

a

0 if S � Bd

a

Call Q the contingent claim that pays f0(S) at T0 if none of the knock out

barriers has been hit during the time interval [0; T0]. Obviously, at any time

t < T0
Q(S; t) = P (S; t)

Therefore, to obtain the price of P at t = 0 we just need to apply, twice, the

method described in the previous paragraph.

Denote by (cn) the Fourier expansion coe�cients of P on [T0; T ] and by (dn)

the Fourier expansion coe�cients of Q on [0; T0]. These coe�cients must

satisfy the relation:

dp = e�y0���
+1X
n=0

cne
�(n�� )

2
y0
2

�

Z �

�
sin

�
n
�

�
(u� �)

�
sin

�
p
�

�
u

�
du

Where � = � ln(a). The value of the integral term is given in APPENDIX

C. It should be noticed that this value decreases faster than O
�

1

n2

�
.

1.4 Numerical study

We consider here the case of an option with the following features:

� It is a double knock out call,

� Its period of maturity is twelve months,

� It is written on a stock paying, after six months, a predetermined discrete

dividend expressed as a percentage of the share value.

Taking an annual constant 5% actuarial risk free rate, an annual constant

20% asset volatility, a spot value S = 100, we let the barriers and the per-

centage of dividends vary.

The computations having been performed on a SUN Ultra 2 computer with

C double type precision, we obtain the following prices for an option at the

money:
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Div. Yield Barriers Monte Carlo Fourier Cox Tree Nb. of points

0%

(
Bu = 120

Bd = 80
1:114 1:114

1:124

1:127

1:136

1:140

1:164

36000

24000

12000

6000

1200

5%

(
Bu = 130

Bd = 70
2:848 2:848

2:861

2:862

2:874

2:880

2:924

36000

24000

12000

6000

1200

10%

(
Bu = 140

Bd = 60
3:429 3:429

3:436

3:438

3:443

3:448

3:466

36000

24000

12000

6000

1200

All the Fourier prices have been computed with the �rst 110 coe�cients of

the Fourier expansion. The \Nb. of points" parameter corresponds to the

number of points on the Cox tree.The Fourier prices are obtained instanta-

neously with a totally satisfying level of accuracy.

2 Worked out examples

We shall, in this section, give examples of how the same techniques can be

used to price fairly complex options.

Options with In & Out barriers, although some of them are not commonly

traded, can be very useful as they allow us to decompose more complex

derivatives, where the kind of the payo� | e-g. the strike or the call/put

feature | depends on whether a certain barrier has been crossed or not.

2.1 Combining In & Out Barriers

Let P be the price of an option with payo� f(S) and 4 barriers: 2 In Barriers

and 2 Out Barriers.

Precisely: the option pays f(S) if at least one of the In Barriers has beeen

8



crossed and none of the Out Barriers has been crossed.

Graphically:

Down Out

Down In

Up In

Up Out

f(S)

1

2

3

I

I

O

O

u

u

d

d

T0

The trajectories 2 and 3 don't give rise to any payo� whereas the trajectory

1 pays f(S) at date T .

We shall construct a function ~f such that the price of our option is equal

to the price of the double knock out option, with Down Barrier Od and Up

Barrier Ou, paying ~f(S) at T .

In order to achieve this, let us introduce appropriate double knock out op-

tions. Let B1 be the set of barriers fId; Iug and B2 the set of barriers

fOd; Oug.
We make the usual variable change:

x = ln

�
S

Od

�
and y0 =

�2

2
T

Let us denote by �1(x0; x)dx the probability that, starting at x0, one ends

up at T in the [x; x+dx] interval without having crossed the barriers B1 and

by �2(x0; x)dx the probability that, starting at x0, one ends up at T in the

[x; x + dx] interval without having crossed the barriers B2.
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Setting �1 = ln
�
Iu
Id

�
and �2 = ln

�
Ou

Od

�
, we see that for i 2 f1; 2g, e�rT�i(x0; x)dx

is the price of the double knock out option with barriers Bi of which the pay-

o� at date T is 1 on the [x; x + dx] interval and 0 elsewhere.

In APPENDIX D, we show, by using Dirac probabilities in the Fourier frame-

work, that

�i(x0; x) =
2e�x+�y0

�i

+1X
0

sin

�
n�

�i
x0

�
sin

�
n�

�i
x

�
e
�
n2�2

�2
i

y0

Now, a quite straigthforward analysis of the problem shows that:

� For S 2 [Iu; Ou] or S 2 [Od; Iu], the option pays f(S) at T .

� For S 2 [Id; Iu], the option P pays f(S) if one of the B1 barriers has been

crossed and none of the B2 barriers has been crossed. The probability of this

elementary event is �1(1� �2).

Therefore, starting at t = 0 with a spot price equal to S0 the price P is the

same as that of the double knock out option, with down barrier Od and up

barrier Ou, paying at date T

~f(S) =

8>><
>>:

�1
�
ln
�
S
0d

�� �
1� �2

�
ln
�

S
Od

���
f(S) if S 2 [Id; Iu]

f(S) if S 2 [Od; Id] [ [Iu; Ou]

0 otherwise

Therefore the price P at date 0 is

P (S0) =
+1X
0

dn sin

�
n�

�1

�
ln

�
S0

Od

�

Where the coe�cients dn can either be computed numerically or with closed

formulae, however it should be noted that the simple numerical procedure

already ensures a high level of accuracy.

2.2 Simple "Double Knock Out" decomposition

Had there been no Down & In, or no Up & In, barrier clause on the previous

option, its price could have been expressed quite simply as the di�erence of

the price of two double knock out options. Graphically:
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Down Out Down Out Down Out

Up Out Up Out

Up OutUp In

2.3 Simple path dependency

In the case of a forward start or of a chooser option, the �nal payo� is not

solely a function of S but can be of the form f(S1; S) where S1 is the value

of S at date T1 2 [0; T ].

Here, the patching principle can easily be extented by using two dimensionnal

Fourier series.

Let P be the price of a double knock out European option paying f(S1; S)

at date T with barriers Bd and Bu.

Let

x = ln

�
S

Bd

�
, y1 =

�2

2
(T � T1) , y0 =

�2

2
T1 and x1 = ln

�
S1

Bd

�

In order to apply the patching principle at date T1, let f1(S) be the price of

the option at date T1.

At date T1, the payo� of the option is a deterministic function P (S1; :),

therefore we can apply the Fourier expansion technique on the [T+

1 ; T ] time

interval. Denote by cn(x1) the Fourier coe�cients:

f1(x) = e�x+�y1
+1X
n=0

cn(x1) sin

�
n�

�
x

�
e
�
n2�2

�2
y1
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With

cn(x1) =
2

�

Z �

0

f (Bde
x1 ; Bde

x) e��xdx

Patching at date T�
1
, we obtain the Fourier expansion of P at date 0:

f(x) = e�x+�y0
+1X
n=0

cn sin

�
n�

�
x

�
e
�
n2�2

�2
y0

With

cp =
4e�y1

�2

+1X
n=0

e
�
n2�2

�2
y1I(n; p)

Where

I(n; p) =

 Z �

0

Z �

0

f (Bde
x1; Bde

x) e��(x+x1) sin

�
n�

�
x

�
sin

�
p�

�
x1

�
dx:dx1

!

3 Low Volatility Related Issues

3.1 Generalities

It is a well known fact that whenever volatilities reach low levels, many nor-

mally satisfying pricing models start producing biased prices; thus, even the

Black & Scholes formula for simple barrier options, when implemented in a

naive way, does not converge for su�ciently low volatilities.

For the Fourier approach described in this paper (and even more so for the

Kunitomo & al. approach) the problem is slightly more complex as the con-

vergence of the scheme now depends both on the volatility and the time to

maturity.

This limiting case problem may at �rst glance seem to be of little importance.

There are however at least three fundamental reasons why it deserves to be

addressed in a satisfactory way :

i) For very long term options on relatively low volality assets (e.g. a well

diversi�ed basket on the Toronto stock exchange).

ii) Although options may not be traded a few days before their expiry date,

they still appear in the books and must therefore be hedged. Obviously, the

most appropriate hedging strategy with respect to an option expiring in a

12



short while is usually a rather intuitive one. However, a trader usually does

not hedge options on an individual basis (as it would be both cumbersome

and too expensive) but globally, as part of a portfolio. Therefore, if a signif-

icant mistake arises when computing the price of a product, however close

this product may be to its maturity, it can have a dramatic e�ect on the

hedge of the whole portfolio. A closely related phenomenon is that of the

"near the barrier shooting up gamma", well known to traders.

iii) To get familiarized with a product, or to check the coherence of the price

he is about to make, a trader does often perform a series of tests, choos-

ing among a set of intuitive parameters (limiting cases from a mathematical

point of view). Because any pricing theory is to some extent incomplete, as

the perfect modelling of stock markets would also necessitate that of human

behaviour, the process involving the trader's intuition is a key element of

price making. Therefore, the tools used by a trader must not be biased.

3.2 Single Barrier Options Fixing Schemes

As we are here mainly concerned with the Fourier technique, we shall not

linger too long on how the Black Scholes low volatility problem can be

addressed.

Let it su�ce to say that the commonly used "capped exponential":

exp(x) := IF x < 100 THEN exp(x) ELSE 0

is bad pratice. It is based, indeed, on the misleading and unjusti�ed as-

sumption that whenever an expression of the form A(x) ! +1 appears in

a �nancial formula, the whole product A(x)B(x) must tend toward zero to

compensate for the divergence of A. A better and usually satisfying pratice

(even with no more than the C double type precision) is to replace prod-

ucts of the form A(x)B(x) by their mathematically (but not computer wise)

perfectly equivalent expression exp(ln(A(x)+ln(B(x)). Surprisingly enough,

even in large investment banks, some senior quantitative analysts seem not

to know about this computer trick.

The single barrier problem being thus solved, let us again turn our attention

to the double barrier problem which has so far been our main concern.
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3.3 Double Knock-Out Options with Low Volatilities

The naive approach for �nding an upper bound to a double barrier option

price is to write:

Bound = Single Up Out + Single Down Out� Vanilla

Although this approach is su�ciently naive, it yields more than just a simple

lower bound when the volatility is low and the barriers are "distant with

respect to the volatility" (we shall de�ne below what exactly we mean by

distant). Indeed, in this special case, the events "hitting the upper barrier"

and "hitting the lower barrier" are nearly disjoint so that what was previously

only an lower bound now turns out to be a very accurate approximation !

The graph below shows both the price of a double knock out option and the

value of the lower bound given above.

0,0
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1,5

2,0

2,5
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4,0

4,5
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Bound
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3.4 The Fourier Approach with Low Volatilities

With the usual C double type precision, only the �rst 15 digits of a number

are signi�cant. Therefore, with coe�cients in the Fourier expansion as high

as 1020, it seems abnormal that we should be able to compute the function

�. However, one must recall that the "real" coe�cients involved in the

computation of the function � are

fcn = cne
�(n�� )

2
T

So that for all integers n,

jfcnj � jcnje�(
�
� )

2
T

Therefore, the smaller the� (i.e: the closer the barriers) the better the con-

vergence.

The graph below shows how (Sup(fcn)) vary with volatility for a double knock
out option.
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The price of an option with an unattainable barrier must naturally be very

close to the plain vanilla Black & Scholes price.

However, if the barrier is very high, using the simple barrier Black & Scholes

formula may yield, as a result of computer precision limitations, a price less

accurate than the one that would have been obtained with the plain vanilla

Black & Scholes formula by simply cancelling out the barrier.

The above discussion, although an over simpli�cation of what usually occurs

in �nancial markets, has enabled us to emphasize an essential point: in order

to improve the accuracy of the prices computed (and therefore of the hedge

parameters for which traders often require a "by perturbation" calculation)

it may be necessary to arti�cially change the position of the barrier for the

purpose of pricing.

To know whether a given barrier displacement is allowable or not, many sub-

btle approaches may be used. We shall now brie
y sketch an approach which,

although mathematically very simple, gives a fair idea of how a barrier-spread

reduction algorithm can be written.

Assuming positive interest rates and denoting by F the forward at maturity,

the probability that the asset price be above the barrier U at maturity is

given by:

P+

U =
1p
2��

Z
+1

U
F

e
�

x2

2�2T dx = O
�
e
�

U2

2�2F2T

�

Therefore, for an option with bounded payo�, the maximum error that can

be introduced by displacing the upper barrier to U is

O
�
e
�

U2

2�2F2T

�

Thus, K being the constant associated with the above O notation, given a

desired precision � on the price of the option, we can determine the lowest

satisfactory upper barrier U by solving:

� = e
�

U2

2�2F2T

i.e.

U =
F�
p
T

2
ln

�
�

K

�

The same can be done for the lower barrier by replacing, in the above formula,

the forward F by the spot S.

16



3.5 A convergence criterion based on the value of �

Let us consider a Double Knock Out call Option. Looking at the expression

of the coe�cients cn given in APPENDIX B, we see that:

jcnj = O
 
ej�j�

j�j

!

Thus, C being the maximum permissible value of any of the ecn coe�cients,

a su�cient condition for the Fourier expansion to converge is given by:

Ce
�
�
T � ej�j�

j�j
Furthermore, j�j being, for � low enough, a strictly decreasing function of �,

we have given a sense to the expression "the barriers are distant with respect

to the volatility".

3.6 Concluding remarks on the low volatility case

We have shown above that although low volatilities pose a serious problem

when one restricts oneself to the usual formulae, the di�culty can be over-

come and a general purpose pricing methodology can be obtained by applying

simple rules.

Let us o�er a simple recipe:

1) If the ecn coe�cients are all whithin a permissible range, compute the price
of the option, otherwise:

2) Try to tighten the barrier-spread, then compute the new ecn coe�cients. If
they are all whithin the permissible range, compute the price of the option,

otherwise:

3) Use the disjoint events approximation.
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4 Multi-time-step Cox Tree

4.1 Framework

The patching principle described above can also be applied in discrete cases.

This principle can for instance lead to the construction of multi-time-step

binomial trees. Indeed, when discretizing a given situation, one does not

need the same amount of precision at all computational times.

Let us for instance consider the case of an american option with a knock out

barrier on a time interval of which the length is small with respect to the

maturity of the option.

0 TT0
T1

Barrier
Clause

1

21 3

It is well know that trees are short sighted with respect to barrier clauses.

Therefore one needs a much higher precision on the time interval 2 during

which the barrier clause is alive than on the simple american time intervals

1 and 3.

On the classical Cox-Rubinstein tree, the time step is set once and for all by

the recombining equation.
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However, one can choose as many time steps as one desires if one decides, in-

stead, to slice the Cox tree and patch the di�erent slices following the above

mentioned principle.

∆

dt2dt1

.

.

.

a

b

c

The usual recombining condition imposes that any node of the �rst tree lying

on the interface � should coincide with a node of the second tree. In the

usual case where � and r are everywhere constant, this leads immediately to

dt1 = dt2.

Therefore, to allow for dt1 6= dt2 we shall instead interpolate logarithmically

the price on the interface. Hence

P (c) = exp

 
log(Sb)� log(Sc)

log(Sb)� log(Sa)
log(P (a)) +

log(Sc)� log(Sa)

log(Sb)� log(Sa)
log(P (b))

!

Where S denotes the price of the asset and P the price of the contingent

claim being priced. The negative value case is dealt with similarly.

We have obviously made an approximation. However, one should keep in

mind that only at the limit does the binomial distribution become gaussian
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| therefore even when one chooses to patch perfectly the nodes on the in-

terface, one only gets an approximate solution | and that the bias by which

we replace the systematic and cumulative error, due to not seeing a barrier,

is similar to that of the integration method by rectangular quadrature.

4.2 Mixed discrete and continuous methods

The only way to price an American option is usually to discretize the situation

with some type of a �nite di�erence scheme. Therefore, one must also use

such a method to price a Bermudan option. However, pricing the whole

option with a �nite di�erence scheme would involve a loss both of time and

accuracy.

Therefore, we prefer to combine the discrete and the continuous methods by

applying our patching principle.

Suppose that P is the price of a Bermudan option written on an asset S

and choose N dates T0; T1; : : : ; TN such that on any time interval [Tk; Tk+1]

the option P is either European or American. And suppose that k is an

integer such that P is American on the intervals [Tk�1; Tk] and [Tk+1; Tk+2]

and European on the interval [Tk; Tk+1].

Slice

Boundary

Boundary

Artificial Down

Artificial Up

Cox Tree

Slice

Cox Tree

Slice

Fourier

T Tk+1k

∆k+1∆k
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Brief sketch of the algorithm :

� On �k+1 | the interface at date Tk+1 | interpolate logarithmically P

� Find, if necessary, two arti�cial boundaries, such that the probability of

the asset price staying between these boundaries is su�tiently close to zero

� Compute the signi�cant Fourier coe�cients on �k+1

� With the Fourier expansion, compute the price P on the interface �k

� Given these values, run backward through the Cox tree slice ending at date

Tk

During this process, the loss of precision, if any, won't occur during the

Fourier [Tk; Tk+1] slice but will be entirely due to the tree structure and thus,

could not have been dealt with any better in the classical �nite di�erence

scheme | e-g. Cox tree.

Indeed, the precision of the result obtained on the �k interface depends only

on having selected the relevant set of harmonics on the �k+1 interface | e-g.

with the Parseval relation

B2

d

�

Z �

0

f(Bde
x)2e�2�xdx =

+1X
n=0

c2n

one can determine with a small extra computationnal cost a value of N such

that
P

+1

n=N c2n is as small as desired. Hence, the loss of precision on the Fourier

slice is perfectly controlled.

Furthermore, at the same con�dence level, the Fourier slice is always one

order faster than the equivalent Cox slice. Hence by using this method

one saves time in two di�erent ways | by saving on the Cox trees on the

European time intervals and by choosing the most e�cient time steps on the

American time interval | and one controls much more closely the accuracy

of the result.

It should also be noticed that on the left side interface of a Fourier slice,

the greek parameters | delta, gamma and theta | can be directly obtained

from the Fourier expansion.
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4.3 Numerical study of a Bermudan Option

We consider here the case of a commonly traded Bermudan option with the

following characteristics:

� It is a double knock out call,

� Its period of maturity is twelve months. The option is European during

the �rst 11 months of its life. During the last month, the option becomes

American.

One can easily understand what makes such an option attractive to investors:

� The American feature on the latter portion of its life makes this option less
vulnerable to sudden changes in the asset price,

� The price lowering e�ect of the barriers makes the option less costly; the

choice of the barriers being directly related to the risk exposure the option

buyer is willing to face.

Making use of the above described method, we proceed as follows:

� On the last month, we compute the price of the option on a Cox tree slice,

with the usual backward induction process.

� On the �rst 11 months of the option life, we apply the Fourier technique

with logarithmic interpolation.

Taking an annual constant 5% actuarial risk free rate, a spot value S = 100

and letting the volatility and the barriers vary, we obtain the following prices

for an option at the money:

With � = 10%,

Barriers Limit Price Fourier Price Pure Cox Price Nb. of points(
Bu = 110

Bd = 90
0:923

0:923

0:922

0:922

0:937

0:941

0:965

12000

6000

1200(
Bu = 120

Bd = 80
4:24

4:24

4:24

4:24

4:26

4:27

4:28

12000

6000

1200(
Bu = 130

Bd = 70
6:185

6:19

6:18

6:17

6:19

6:19

6:20

12000

6000

1200
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With � = 20%,

Barriers Limit Price Fourier Price Pure Cox Price Nb. of points(
Bu = 120

Bd = 80
1:55

1:55

1:55

1:55

1:57

1:58

1:63

12000

6000

1200(
Bu = 130

Bd = 70
3:97

3:97

3:97

3:95

4:00

4:01

4:04

12000

6000

1200(
Bu = 140

Bd = 60
6:35

6:35

6:34

6:34

6:37

6:39

6:40

12000

6000

1200

With � = 30%,

Barriers Limit Price Fourier Price Pure Cox Price Nb. of points(
Bu = 130

Bd = 70
2:03

2:03

2:03

2:03

2:06

2:07

2:09

12000

6000

1200(
Bu = 140

Bd = 60
3:97

3:97

3:96

3:95

4:00

4:03

4:08

12000

6000

1200(
Bu = 150

Bd = 50
6:02

6:01

6:01

6:00

6:05

6:05

6:15

12000

6000

1200

All the Fourier prices have been computed with the �rst 90 coe�cients of the

Fourier expansion. The \Nb. of points" parameter corresponds to the num-

ber of points on the Cox tree, with respect to the Cox method, and to the

number of points on the last vertical row of the Cox tree slice, with respect

to the Fourier technique.

Hence, with the same number of points n, the Fourier technique works about

10 times faster than the usual Cox tree method for large values of n and

about 5 times faster than the usual Cox tree method for small values of n.

Eventually, the Fourier technique provides in less than 1 second a price with a

level of accuracy corresponding to a 35 seconds computation using the usual

Cox tree method.

23



11 months 1 month

American
Style

European
Style

Out Lower Bound

Out Upper Bound

Cox Tree
   Slice   Slice

   Fourier
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5 APPENDICES

5.1 APPENDIX A: the rebates

The price of the double knock out option with rebates must be equal to the

sum of the price of the double knock out option without rebates and the

price of pure rebates | i.e. rebates payment if the barriers are touched and

a zero payo� at maturity.

Let us denote by e�x+�y�(x; y) the price of the pure rebates. The function

	0(x; y) = �(x; y)� e��yRd

sinh(
p��(� � x))

sinh(
p���) � e��ye���Ru

sinh(
p��x)

sinh(
p���)

Is a solution of the heat equation and satis�es the boundary conditions

	0(0; y) = 0 and 	0(�; y) = 0

Therefore, denoting by (dn) the Fourier coe�cients of the function

x 7! Rd

sinh(
p��(� � x))

sinh(
p���) + e���Ru

sinh(
p��x)

sinh(
p���)

One has :

	0(x; y) =
1X
n=0

cn sin

�
n�

�
x

�
e�(

n�
� )

2
y

Therefore

	(x; y) = e��yRd

sinh(
p��(� � x))

sinh(
p���) + e��ye���Ru

sinh(
p��x)

sinh(
p���)

�
1X
n=0

cn sin

�
n�

�
x

�
e�(

n�
� )

2
y

5.2 APPENDIX B: Call or Put

Let � = ln
�
K

Bd

�
,

� The Fourier expansion coe�cients of the call price are given by:

cn =
2

�

Z �

�
(Bde

x �K)e��x sin

�
n�

�
x

�
dx
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= (�1)ne���
 

2�(1� �)e�Bd

(1� �)2�2 + n2�2
� 2��K

�2�2 + n2�2

!

+e���
 
n�

�
cos

�
n�

�

�
� sin

�
n�

�

�! 
2�(1� �)e�Bd

(1� �)2�2 + n2�2
� 2��K

�2�2 + n2�2

!

� The Fourier expansion coe�cients of the put price are given by:

cn =
2

�

Z �

0

(K � Bde
x)e��x sin

�
n�

�
x

�
dx

=
2n�

�

 
2�(1� �)Bd

(1� �)2�2 + n2�2
� 2��K

�2�2 + n2�2

!

�e���
 
n�

�
cos

�
n�

�

�
� sin

�
n�

�

�! 
2�(1� �)e�Bd

(1� �)2�2 + n2�2
� 2��K

�2�2 + n2�2

!

5.3 APPENDIX C: Dicrete dividends

One has:Z �

�
sin

�
n
�

�
(u� �)

�
sin

�
p
�

�
u

�
du

=
1

2

Z �

�

�
cos

�
(n� p)

�

�
u� n�

�
�

�
� cos

�
(n + p)

�

�
u� n�

�
�

��
du

=

8><
>:

2�

�(n2�p2)

�
p(�1)n+p+1sin

�
n��

�

�
+ n sin

�
p��

�

��
if p 6= n

(� � �) cos
�
n��

�

�
+ �

n�
sin

�
n��

�

�
if p = n

5.4 APPENDIX D: Computing probability distribu-

tions

Let f bet the function worth 1 on the [x; x + dx] interval and 0 elsewhere.

Consider the double knock out option with up barrier Iu and down barrier

Id paying f at date T . Denoting by x0 the spot, the option price can be

expressed as the sum of the following Fourier expansion:

Price = e�x0+�y
+1X
n=0

cn sin

�
n�

�1

�
e
�

2y2�2

�2
1

where cn stands for the n-th Fourier coe�cient computed as usual with
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cn =
2

�1

Z �1

0

f(Ide
u)e��u sin

�
n�u

�1

�
du

Whence

cn =
2

�1
e��x sin

�
n�x

�1

�
dx

Besides

e�rT�i(x0; x)dx = Price

Therefore

�1(x0; x) =
2e�x+�y0

�1

+1X
0

sin

�
n�

�1
x0

�
sin

�
n�

�1
x

�
e
�
n2�2

�2
i

y0
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