
 

 
 
 

 
 
 
 

 
Reconsidering asset 

allocation involving illiquid 
assets 

 
Dan Cao (*) 

Jérôme Teïletche (**)‡
 

 
 
 
 
 

 
(*)Department of Economics - MIT 
(**)Dauphine University 
 
 
 
Corresponding author : 
 
CEREG-DRM, Université Paris-Dauphine, 
Jérôme Teïletche 
Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, 
jerome.teiletche@dauphine.fr 
 
 
‡The authors will like to thank, without implicating them, Patrick Artus, Michel Crouhy, Mahdi Mokrane and 
Florent Pochon for helpful suggestions. We also thank Dmitry Kotov for very valuable research assistance.  



 1

Reconsidering asset allocation involving illiquid assets 
 

Abstract:  
 

Alternative assets are gaining increasing importance in investor’s portfolios. One of their defining 

characteristic is their poor liquidity which often translates into an inherent smoothing process of the returns. 

For asset allocation purposes, this feature has to be seriously addressed as it leads to a severe 

underestimation of the variance of returns and their correlation with other (standard) assets. In this article, in 

order to deal with practical issues, we extend previous researches which model the smoothing process as a 

moving average one in several directions: (i) we propose a correction for the case of numerous illiquid 

assets ; (ii) we investigate the implications of the standard practice of fitting autoregressive models in place 

of moving average models for the correction of the returns variance; (iii) we provide generalization to the 

case where the returns process is jointly governed by smoothing and true (economically) time-dependent 

behaviour. All the theoretical results are illustrated empirically with applications to US real estate and 

venture capital indexes.  

 



 2

Introduction 

 

Alternative assets, that is assets which are different from core assets such as money market, bonds 

and equities, are gaining increasing importance in investor’s portfolios; see for instance the recent 

survey of institutional practices by Strong, O’Sullivan and Cunningham [2003] or the almost 

doubling of assets under management of the hedge fund industry between 2000 and 2005, reaching 

the Bns $ 1,000 threshold. 

 

One of the major features of alternative investments is that they are less liquid than standard ones, 

making them harder to valuate. Since by definition illiquid assets cannot be exchanged on a 

secondary market, one often relies on expert valuations to price them. The matter is then that prices 

may Table properties which are largely spurious. In particular, since returns are implicitly smoothed, 

they appear far less volatile and less correlated with other assets than they are in reality. To simply 

illustrate this problem, let us imagine that an investor is asked to choose among two funds. The 

strategy of both funds is simple as it consists in replicating the S&P index performance and we 

assume that both funds respond to this assignment perfectly. The difference is that the first fund 

(say A) is valuating its portfolio every day on the basis of the true contemporaneous S&P return 

while the second fund (say B) reports the rolling average return over the past month. Let us imagine 

now that the investor computes the standard deviation of the returns of both funds and their 

correlation with the S&P index over the period 1995-2004 with daily data. For Fund A (the one 

which uses contemporaneous information), she will find that these statistics are 18% p.a. and 100%, 

respectively. For Fund B (the one which uses moving average of returns), she will infer tiny figures 

such as a 3% p.a. standard deviation and a 20% correlation with the S&P index returns. With such 

statistics, we have no doubt that the investor will prefer Fund B. What is troublesome is that she 

will probably do that even in the case where fees are larger for Fund B while this Fund adds no 

value. Contrary to what she infers from data, the investor will have realized no risk reduction or 

diversification gains with Fund B since it will remain exposed to the same risk factors as the ones of 

Fund A or its existing equity portfolio.  

 

Despite being only a caricature, the previous example perfectly illustrates the dangers of the naïve 

use of standard techniques when it comes to evaluate the statistical properties of an illiquid asset, in 

the sense of its returns being smoothed, as it typically leads to incorrect inference of allocation 

among assets with too large a weight on the illiquid asset. As the proportion of alternative assets in 

portfolios is mounting, this implication is increasingly problematic and must be treated with care. 

One can find in the literature several attempts to tackle this matter, starting notably with the work of 
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Geltner [1991, 1993] on real estate indexes. In a recent paper, Getmanski, Lo and Makarov [2005] 

(GLM henceforth) have formalized this issue in an elegant and precise way. In their framework, the 

smoothing process is recovered either through the autocorrelation structure of the observed returns 

or through a regression of observed returns on contemporaneous and lagged values of a factor. The 

authors then propose an application to (single) hedge funds returns, which are probably the less 

illiquid of illiquid assets.  

 

In this paper, we extend this research to deal with issues which are of crucial importance, both for 

researchers and practionners. More precisely, we analyze three key points. First, what happens 

when one faces two (or more) illiquid assets, such as a portfolio mixing Private Equity and real 

estate? Second, what are the implications of the usual practice which consists in fitting 

autoregressive (AR) processes on observed returns while smoothing implies a moving average 

(MA) behaviour? As we shall see below, the correction of standard deviation and the correlation 

with other assets can be rather sensitive to this hypothesis. Third, how to consider the case where 

the true (economic) process governing the asset prices is itself autocorrelated? We argue that this 

point is particularly plausible in the case of real estate and, again, the correction of statistics turns 

out to be very sensitive to this hypothesis. In each case, we propose solutions and methods which 

are easy to implement in practice and illustrate them with the case of US real estate and venture 

capital. After introducing some notations and briefly reviewing the GLM approach, the paper 

successively deals with each of these three issues. We end our paper by some concluding comments 

and an example of its various results with a typical asset allocation problem.  

 

berNotations and theoretical background 

We begin by giving a brief recall of the GLM framework1. Let tR  denote the (continuously 

compounded) true return of an alternative asset with mean μ  and variance 2σ . It is assumed that 

this true (or effective) return is not observed but rather that the observed return at time t is a 

weighted average of past and present returns:  
 

∑
=

−=
k

i
iti

o
t RR

0

θ ,      (1) 

 

thus implying a smoothing process. The authors further impose the restrictions ii ∀≤≤   10 θ  and 

1
0

=∑ =

k

i iθ  so that all the information about tR  can be inferred from the time series of o
tR . From 

this set of hypothesis, it is straightforward to deduce first that the average return is unchanged, 
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[ ] [ ] μ== t
o
t RERE , meaning that the true value of the asset is revealed on average which is logical 

since smoothing based on a moving average does not imply any bias in the first moment. On the 

contrary, smoothing leads to an understatement of the variance, since: 
 

[ ] [ ] 1varvar
0

2 ≤= ∑ =

k

i it
o
t RR θ .     (2) 

 

The limit case of no-bias is obtained for 10 =θ  and 0  0 >∀= iiθ , that is with no smoothing. As a 

result, the Sharpe ratio is overestimated, one implication already clearly put forward in Lo [2002]. 

The quantity ∑ =

k

i i0
2θ , known as the Herfindahl index in industrial organisation economics, can act 

as a measure of the unsmoothness of the process. It fluctuates between ( )1/1 +k  when all iθ  are 

equal and 1 when there is no smoothing. Smoothing also has implications for the analysis of 

correlation. Adding the hypothesis that the true returns are not serially correlated, both for the 

illiquid assets and another asset which is assumed to be liquid and whose returns are denoted by tF , 

GLM shows that : 
 

( ) ( ) kjRRRR k

i i
jk

i jiijtt
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0
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0

θθθ , (3) 

( ) ( ) kjFR;FR k

i ijjttjt
o
t ≤≤= ∑ =−− 0for      ;corrcorr

0
2θθ ,  (4) 

 

and 0 elsewhere. Equation (3) shows that some spurious autocorrelation is induced for 1>j . 

Equation (4) states that spurious lead-lag correlation is also introduced while the contemporaneous 

correlation is understated. This last result, coupled with the one in (2), has obviously severe 

consequences for asset allocation issues.  

 

To illustrate the various theoretical results of this paper, we choose two important alternative assets: 

(i) venture capital quarterly returns observed from 1986Q3 to 2003Q4, as reported by Venture 

Economics; (ii) real estate quarterly returns observed from 1978Q1 to 2004Q3, as reported by the 

NCREIF indexes for various regions of the US (National, West, South, East, Midwest)2. We also 

need to choose a factor (or liquid asset) for each. Preliminary investigations showed us that the best 

results were obtained with the Nasdaq Composite index for venture capital and the 30-years Fannie 

Mae mortgage rates for real estate. In Table 1, we report descriptive statistics for the returns of 

alternative assets. All the real estate indexes are characterized by a large number of significant 

autocorrelations, with none being negative up to the 12th lag. While we will show later that some 

other reasons might also be invoked, there is clear presumption of a smoothing process for these 

indexes since they are typically drawn from the appraisal returns reported by the real estate experts. 

The pattern is somehow different for Venture Capital returns, for which the correlation with the 
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factor is far higher, but also the smoothing behaviour is far less evident since if the first three 

autocorrelation coefficients are significant at the 1% level, there is no other positive significant 

autocorrelation and all coefficients are negative from lag 5 up to 12.  

 

The smoothing structure is analyzed in more details in Table 2 where we present the results of the 

estimation of the smoothing coefficients iθ  through MA models. First, one estimates the MA(k) 

process, ktktt
o
tR −− ++++= εϑεϑεα ...11 , and then simply deduces the smoothing parameters as 

( ) ( ) 1   ˆˆ1/ˆˆ  ,ˆˆ1/1ˆ
110 >+++=+++= ikiik ϑϑϑθϑϑθ LL  3. Without any surprise given the 

correlation structure, each time-series is associated with a significant MA process. The maximum 

lag associated to the MA model is higher in the case of real estate returns, notably for the national 

index, which is consistent with a smoother profile, as also confirmed by lower values of the 

Herfindahl index4. In the bottom of the table, we present the corrections for both the standard 

deviation of returns and the contemporaneous correlation with the factor5. Both statistics are 

obviously corrected upwards when the smoothing pattern is removed from the time-series.  

 

The case of several illiquid assets 
 

We begin our extensions of the framework by considering the case of multiple illiquid assets. Let us 

assume that there are two illiquid assets and that one wants to estimate their correlation. Both assets 

are subject to a smoothing process with coefficients )1(,iθ  and )2(,iθ  respectively. 1k  and 2k  denote 

the respective lags of both processes. Using the same set of assumptions as before, we infer that: 
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From Cauchy-Schwartz inequality and the fact that iii ∀≥≥   0  ,0 )2(,)1(, θθ , we infer that: 
 

( ) ( ) ( ) ∑∑∑∑∑ =====
≤≤ 21212121

0
2

)2(,0
2
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,min

0
2

)2(,
,min

0
2

)1(,
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0 )2(,)1(,
k

i i
k

i i
kk

i i
kk

i i
kk

i ii θθθθθθ . (6) 
 

From (5) and (6), we deduce that in most cases, the correlation between both assets will be 

understated. The exception to this is obtained when ( ) ∑∑∑ ===
= 2121

0
2

)2(,0
2

)1(,
,min

0 )2(,)1(,
k

i i
k

i i
kk

i ii θθθθ , 

that is when iii ∀=   )2(,)1(, θθ  or, in literal terms, when the smoothing process is the same for both 

assets. Apart from this special case, this result implies that the interest for these assets will be 

overestimated since they will present diversification characteristics which are superior to their true 
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ones. We can finally notice that the smoothing process might induce spurious lead-lag correlation 

between both assets since one can generalize (5) to various lags according to: 
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and zero elsewhere. Note that (7) generalizes (3) as the latter formula is obtained for the special 

case where one of the asset is liquid, i.e. ( ) ( ) 0  0;1 ,,0 >∀== ijij θθ .  

 

In Table 3, we present the correction implied by formula (5) for the illiquid assets here studied. In 

each case, we present the observed contemporaneous correlation on the upper part of the matrix and 

the corrected correlation on the lower part of the matrix. The ratio between both correlations is 

equal to 1.2 on average with corrections ranging from 1.05 for the MidWest-West correlation to 

1.61 for the National real estate -Venture Capital correlation, a quite significant number. 

 

Fitting AR models in place of MA models 
 

One of the defining features of the smoothing process is the autocorrelation of the observed returns. 

In the literature, this characteristic has been erroneously interpreted as potentially captured through 

an autoregressive model, while it is a moving average one (this issue is discussed in further details 

later). Especially, it has become a standard practice to create unsmoothed returns time-series 

according to the following steps6: (1) estimate an AR model, generally an AR(1) t
o
t

o
t uRR += −1ρ  or 

an AR(2) t
o
t

o
t

o
t vRRR ++= −− 2211 ρρ ; (2) create the transformed time-series ( ) ( )ρρ ˆ1/ˆ 1 −−= −

o
t

o
tt RRZ  

or ( ) ( )212211 ˆˆ1/ˆˆ ρρρρ −−−−= −−
o
t

o
t

o
tt RRRZ . In theory, this practice is far from being without 

consequences. In particular, it is well-known that an autoregressive process is far more persistent 

than a moving average one. While the autocorrelation function of a MA(k) process equals zero for a 

lag superior to k, it declines only exponentially for an AR(1) process with the kth autocorrelation 

coefficient being equal to kρ  (where ρ  is the first-order autocorrelation coefficient). It is our belief 

that this practice is motivated by the fact that it is easier to estimate an autoregressive model, which 

can be fitted through a simple OLS regression, than a moving average model which necessitates 

maximum likelihood or non-linear least-squares.  

 

But easiness seems here detrimental to precision. To the best of our knowledge, such issue is not 

treated in the standard econometric literature where it is assumed that the form of the process 
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(whether AR, MA or a combination of both) is known or easily identified (through inspection of the 

autocorrelation function or the use of information criteria). We here propose some asymptotic 

theoretical and simulation results for various sample sizes. Let us begin with the example of 

someone who is fitting a AR(1) model on a time-series of observed returns which are smoothed 

according to a process similar to (1). To keep expressions simple and without loss of generality, we 

assume that 0=μ . Let *
Tρ  denote the first-order coefficient obtained in the OLS regression with 

*
1

*
t

o
tT

o
t uRR += −ρ . We have ( )∑∑ == −=

T

t
o
t

T

t
o
t

o
tT RRR

2

2

2 1
* /ρ . Asymptotically, this formula simplifies to 

( ) ( )o
t

o
t

o
t RRRE var/1

*
−=ρ . Using the expression for ( )o

tRvar  in (2) and the fact that 

( ) ( )( )∑ −

= +− =
1

0 11 var k

i iit
o
t

o
t RRRE θθ , it follows that: 

 

∑∑
=

−

=
+=

k

i
i

k

i
ii

0

2
1

0
1

* / θθθρ .     (8) 

 

Given that ii ∀>   0θ , *ρ  is unambiguously positive. Moreover, if the smoothing coefficients are 

strictly decreasing, iii ∀≥ +   1θθ , it is easy to show that *ρ  will necessary be less than unity. In the 

contrary case, we cannot rule out that 1* >ρ  but one can notice that this is the less plausible the 

lowest k  is. Now, let us imagine that we create a new time-series tZ  with 

( ) ( )*
1

* 1/ ρρ −−= −
o
t

o
tt RRZ . We deduce that: 
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The ratio in (9) defines whether the true variance of returns is overestimated (if the ratio is superior 

to 1) or underestimated (if the ratio is inferior to 1). Both outcomes are possible and the final 

answer is an empirical one even if as we illustrate below, most of the smoothing patterns give rise 

to a overestimation of the true variance. All we can assert is that overestimation is more probable 

when k  is small. For instance, when 1=k , the estimation of the smoothing process through an 

AR(1) process systematically leads to an overestimation of the variance of returns since 

( ) ( ) ( )( )[ ] [ ] 1/11  var/var 10
2

1
2
0

2
1

2
010 >−++−+= θθθθθθθθtt RZ  where we use the fact that 

110 =+θθ  and 10
2

1
2
01 θθθθ >+> . We can also note that the overestimation is higher when the 

process is the most smoothed, that is when 5.010 ==θθ . In this case, we have 

( ) ( ) 5.1var/var =tt RZ . This means that the true variance is overestimated by 50%! This example 

helps us understand why the usual practice consisting in estimating smoothing processes through 
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AR models with short lags is misleading. If we fit an AR(1) process, we find that 5.0* =ρ . While 

the first-order autocorrelation is correctly estimated, the problem is that the AR process leads one to 

spuriously infer that the underlying process is very persistent since, for instance, it induces that the 

second-order autocorrelation is 0.25 while it is null in reality. On the contrary, the MA process 

allows to correctly identify the fact that the process is not persistent.  

 

We can reproduce the same reasoning for the case where the smoothing process is estimated 

through an AR(2) process and where the corrected time-series is obtained as 

( ) ( )*
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For finite sample sizes, it is more difficult to derive equivalent formulae. In Table 4A and 4B, we 

provide simulation evidence for the case of the AR(1) and the AR(2) processes, respectively. We 

begin by simulating a standard normal variable for fixed sample size, T. This time-series is then 

smoothed according to the various smoothing profiles. We then estimate the autoregressive process 

and construct a new time-series from this. We finally compute the ratio between the variance of this 

final time-series relatively to the one of the original time-series (which equals 1 in theory). We call 

this the overestimation rate. These steps are reproduced 10,000 times for each kind of smoothing 

process and each form of autoregressive process. From these 10,000 simulations, we draw the 

sample average value of the ratio and its standard deviation. 

 

In Tables 4A and 4B, we begin by presenting the implied characteristics of the smoothing profiles. 

We notably see that for each smoothing profile, the smoothness is increasing in the length of the 

smoothing process, k. For the AR(1) process, we see that the various smoothing profiles described 

by GLM (straight-line, sum-of-year or geometric), the estimation of the smoothing profile through 
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the autoregressive process leads to an overestimation of the variance of the “true” returns in the 

asymptotic case. For most cases, this overestimation is also observed in finite samples. We also see 

that overestimation is increasing in sample size and that the overestimation rate is increasing in the 

length of the smoothing process for the straight-line and sum-of-year cases while it is the contrary 

for the geometric smoothing pattern. For the AR(2) case, we have quite different results. Cases of 

underestimation of the variance become far more frequent. The reason is that the persistence of the 

AR(1) process is partially compensated by the inclusion of the second-order term which is generally 

negative. Here again, we however observe that overestimation is increasing in the sample size. In 

the cases of straight-line and sum-of-year smoothing profiles, we observe that the overestimation is 

still increasing in the length of the smoothing process, k, and thus in the smoothness of the process 

(as shown by the Herfindahl index). In the case of the geometric profiles, the relationship between 

length of the smoothing process (or smoothness) and overestimation appears non-linear.  

 

In Table 5, we present the correction for illiquidity obtained through AR models. We also compare 

the values of coefficients obtained in the AR regressions with their theoretical counterparts described 

above (see equations (8), (10a) and (10b)) where we replace smoothing coefficients iθ ’s with their 

values deduced from MA models (see Table 2). We observe that empirical and theoretical 

coefficients of the AR models are close in both cases. This tends to validate the framework here 

adopted. When we compare with Table 2, we clearly see that the corrections for illiquidity obtained 

through AR models can largely differ from the ones deduced from MA models. Concerning the 

standard deviation, largest discrepancies are observed for the AR(1) model for real estate indices and 

for the AR(2) model for venture capital. Concerning the contemporaneous correlation with the factor, 

with the exception of venture capital, the correction are really at odds with the ones implied by the 

MA model, both for the AR(1) and the AR(2) models. To sum up this section, we conclude that the 

choice of estimating the smoothing process through autoregressive process can severely bias the 

estimation of the variance of the illiquid assets. We strongly recommend the use of MA processes for 

that purpose.  

 

Combining autoregressive and smoothing processes  
 

The framework developed by GLM is based on the assumption that the true returns are not serially 

correlated. The assumption behind this hypothesis is the classical Efficient Markets Hypothesis 

which states that in an efficient market, prices should fluctuate randomly since all relevant 

information is already incorporated in them, due to the competition between traders, and are thus 

only perturbated by unexpected news (see e.g. Fama [1970]). A consequence is that the sequence of 
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returns is purely random and, in particular, does not Table serial correlation. The debate on whether 

the efficient markets hypothesis is verified in practice is largely behind the scope of the present 

paper but one can observe that except with very high frequency data where microstructure frictions 

disturb the behavior of prices, the null of no correlation between consecutive returns is largely 

supported by the data (Campbell, Lo and Mac Kinlay [1997]). In Table 6, we illustrate this result 

with the monthly and quarterly returns of indices covering the major financial markets in the world 

(S&P 500, JP Morgan Government Bond World).  

 

Thus it seems reasonable to attribute all the serial correlation observed in data to some form of 

smoothing behaviour when it comes to analyze the returns of financial assets7. We think that this is 

more questionable when one has to deal with real estate returns or even private equity returns. The 

reason is that serial correlation is far more frequent for economic variables. In Table 6, we 

document that point for GDP growth (in real terms) and inflation in the US. We provide additional 

evidence concerning the autocorrelation structure of real-estate related indices. If no significant 

dependence is identified for the NAREIT index, we clearly see strong positive autocorrelation 

coefficient for the housing prices indices. What is interesting in the latter case is that such indices 

are based on observed transactions and are thus less prone to the kind of smoothing behaviour we 

might expect for expert-based (appraisers) valuations. It is thus necessary to incorporate the 

possibility that the serial correlation observed in illiquid assets returns is partly due to a true 

underlying autoregressive process8.  

 

We start with the simple case where the true return is driven by an AR(1) process, 

ttt RR ερμ ++= −1 . Combining this dynamics with the smoothing process in (1) and denoting 

tt εθη 0=  and 0/θθϑ ii = , it follows that observed returns satisfies an ARMA(1,k) model 

ktktt
o
t

o
t RR −−− +++++= ηϑηϑηρμ L111 . Even though the dynamics is richer, the approach is as 

simple as before. First, estimate the parameters through maximum likelihood. Second, deduce 

smoothing parameters along the same lines as with the MA process: 

( ) ( ) 1   ˆˆ1/ˆˆ  ,ˆˆ1/1ˆ
110 >+++=+++= ikiik ϑϑϑθϑϑθ LL . Finally, correct the moments as before but 

with some variations in formulas to incorporate the AR(1) dynamics9: 
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  (12) 

 

If the process is stationary, that is 1≤ρ , it can be shown that the smoothing process again leads to 

an underestimation of the variance and of the correlation, even when mixed with the AR(1) 

dynamics. We have estimated this model for the two kinds of alternative assets here investigated10. 

For Venture Capital, the results were not very conclusive. The AR(1) term simply substitutes to the 

MA(1) one, which becomes not significant different from zero. All in all, a likelihood ratio test 

indicates that the ARMA(1,3) model does not offer a superior model to the MA(3) model 

previously chosen. This result tends to confirm that the hypothesis that true returns are not serially 

dependent seems acceptable for Venture Capital. More satisfactory results are obtained with real 

estate indexes. For the national index, the estimated ARMA(1,12) leads to a likelihood ratio statistic 

of 25.04 which is largely superior to the 1% critical value (6.63). The problem is that some MA 

coefficients become significantly negative, which seems at odds with a form of smoothing 

behaviour. If we impose the constraints that all MA coefficients should be positive, the likelihood 

ratio statistic shrinks to 3.96, which is still significant at the 5% level. The Herfindahl index 

increases to 0.174 from 0.093 (Table 2) which means that the estimated process is less smoothed. 

This result is not surprising since the generalized model attributes part of the autocorrelation 

structure to pure autoregressive (economic) phenomenon while the MA model only considers 

smoothing effects. This implication is also clear if one applies the corrections presented in (12) 

from which we infer that the corrected standard deviation is 3.31% against 5.47% for the MA 

model and 1.67% for the original data while the corrected contemporaneous correlation with the 30-

yrs mortgage rate is 0.390 against 0.450 for the MA model and 0.222 for the original data.  

 

The generalization of the model should not necessarily be limited to first-order autoregressive 

dynamics. For instance, we have observed that real estate indexes are characterized by some kind of 

yearly seasonal pattern with autocorrelation coefficients at multiple values of 4 being larger than 

their near neighbours. We can thus assume that the process governing the true returns is 

ttt RR ερμ ++= −4  which, when combined with the smoothing process in (1), leads to an 

ARMA(4,k) process. In practice, we have found that the ARMA(4,3) is offering the most 

satisfactory results, meaning that the maximum lag of the smoothing process is now equal to 3. For 
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at least 3 among the five regions (National, West and Midwest), the more parsimonious 

ARMA(4,3) model is superior to the MA models, as shown by lower information criteria11. From 

the ARMA(4,3) model, 3322114 −−−− +++++= tttt
o
t

o
t RR ηϑηϑηϑηρμ L , the parameters of the 

smoothing process are recovered according to ( )3210
ˆˆˆ1/1ˆ ϑϑϑθ +++=  and 

( )321
ˆˆˆ1/ˆˆ ϑϑϑϑθ +++= ii  for 1>i . Given that the lag of the MA is inferior to the lag of the AR, the 

corrections for the moments are as in the simple MA case, that is (2) and (3), the only difference 

coming from the estimated values of the smoothing coefficients. In Table 7, we report the 

correction for the statistics of interest in asset allocation problems. We observe that these statistics 

are larger than the one directly inferred from data but they are smaller than the one obtained with 

the MA model. Again, this reflects the fact that with autoregressive dynamics, one is putting less 

emphasis on smoothing, as clearly shown by the comparisons of Herfindahl indexes in Table 2 and 

Table 7.  

 

This section has clearly shown that for some alternative assets and notably for real estate, it is 

necessary to go beyond the hypothesis of a pure random process for the true returns and to jointly 

estimate smoothing and autoregressive processes. If one is to ignore this aspect, the danger is to 

overvalue the smoothing pattern of the returns and thus to infer corrections for statistics which 

might be too disadvantageous for illiquid assets. One limitation is that generalization to ARMA 

processes with higher lags for the autoregressive part leads to more complex theoretical corrections. 

It is our belief that for most alternative assets, low order processes are sufficient. If necessary, a 

simpler procedure, which might not be too inefficient for large enough sample size, is as follows : 

(i) initialize the process with theoretical values for 0≤t  such as ( ) 1

1
1

−

=∑−×
p

l lρμ  where μ  is the 

estimated average of the observed return and the lρ ’s are the coefficients and p the maximum lag 

of the AR part of the process; (ii) deduce the corrected time-series *
tR  recursively according to 

( ) 0
**

11
* /θθθ ktkt

o
tt RRRR −− −−−= L  for Tt ,,1K= .  

 

6. Conclusion: an example of implications for asset allocation 

 

In this paper, we have extended previous researches on the implications of illiquidity and returns 

smoothing for asset allocation. Starting from the model recently introduced in GLM, we have 

offered numerous new theoretical and empirical results which are important in practice. First, we 

have extended previous results for the case of various illiquid assets. Second, we have provided 

simulation and empirical evidences that the standard practice to unsmooth the time-series through 
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autoregressive processes can be misleading. Third, we have shown that, for some alternative assets, 

it is relevant and even necessary to incorporate jointly autoregressive dynamics along the smoothing 

process.  

 

To illustrate further the implications of our results, we end with a typical asset allocation exercise. It 

consists in establishing optimal portfolios mixing two alternative assets, real estate (national index) 

and Venture Capital, with a standard asset, the Nasdaq. We aim to compare portfolios composition 

when one considers raw statistics, as drawn from original time-series of returns, and corrected 

statistics. For real estate, the correction is based on the ARMA(4,3) model presented in Table 7 

while for Venture Capital the correction is based on the MA(3) model presented in Table 2. The 

correction leads to higher standard deviation for both assets. Concerning the correlation matrix, two 

noteworthy features emerge. First, the correlation between both illiquid assets is almost unchanged. 

This result is very specific to this empirical application and is due to the fact that the smoothing 

coefficients are very similar for both time-series (see above). Second, if the correlation between real 

estate and Nasdaq increases in absolute value as a result of the de-smoothing, it becomes more 

negative since the original sign is negative. Thus, the attempt to remove smoothed characteristic of 

the time-series conveys higher diversification properties for the illiquid asset. For Venture Capital, 

we observe the more intuitive result of diminished diversification properties.  

 

We then solve the standard Markowitz quadratic problem, with no short sales and budget 

constraints, for various levels of risk loving λ . All in all, the results, which are summarized in 

Table 8, clearly illustrate the implications of the correction of the statistics as the optimal portfolios 

are characterized by a sharp fall in Venture Capital proportion, which is the most affected by the 

correction, in favour of real estate and, above all, the Nasdaq. Correcting for illiquidity is clearly a 

key step in asset allocations problems which involve alternative assets. 

 

NOTES 

 
1 Another way to consider the implications of illiquidity is in terms of periodic release of the accumulated 
value of the asset, which is tantamount to the case of the stale pricing problem analyzed in details in Scholes 
and Williams [1977] and Lo and McKinlay [1990] (see Asness, Kail and Liew [2001] for a discussion in the 
case of hedge funds). Stale pricing has huge implications on correlation which is downward biased but none 
on volatility (in fact volatility can even be upward biased if the mean return is different from zero) and above 
all does not lead to any autocorrelation of observed returns, thus being inconsistent with empirical facts for 
alternative assets. 
 
2 For an introduction and a discussion of the NCREIF indexes, see Fisher [2005]. 
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3 Details of the estimation are available in the working paper version of the article, where we compare the 
moving average method with two alternative methods, one based on a factor model and the other which 
relies on lower frequency data. 
 
4 More generally, the values of the Herfindahl index found here are typically lower than the ones put forward 
in GLM, confirming our conjecture that hedge funds are the less illiquid of illiquid assets.  
 
5 The factor is here taken as an example. We could obviously analyze the implications of the smoothing 
pattern with any variable under the maintained hypothesis that this variable is not itself subject to a 
smoothing behaviour. We relax this last hypothesis later. 
 
6 See, among others, Budhrajha and de Figueiredo [2004] or Sherer [2004]. 
 
7 Note however that GLM suggest three other reasons why returns might be serially correlated without any 
smoothing process. The first one is the possibility of time-varying expected returns. The two others are more 
specific to the hedge funds and are time-varing leverage and high water mark incentive fees. They conclude 
that none is able to justify the serial correlation observed in hedge funds returns.  
 
8 It is beyond the scope of this paper to analyze the sources of this serial correlation in economic variables. 
We can however suggest several explanations: time-varying expected economic growth, physical persistent 
phenomenon, extrapolative expectations. In the case of real estate, this last explanation is deemed to be 
particular meaningful since there is large evidence that household expectations Table such a pattern 
concerning housing prices (see, for instance, Case, Quigley and Shiller [2004]). Note however that even for 
indices which are based on transaction prices, some form of smoothing might appear due to temporal 
aggregation; see Geltner [1993].  
 
9 Obviously, one can generalize the formula to the case where the factor is itself smoothed and / or 
autocorrelated.  
 
10 All the estimation details are available upon request.  
 
11 One should notice that the ARMA(4,3) model for quarterly data implies an AR(1) model at an annual 
frequency. 
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Table 1. Descriptive statistics. 
 Real estate 
 National East South West Midwest 

Venture 
Capital 

Time period 1978Q1-
2004Q3 

1978Q1-
2004Q3 

1978Q1-
2004Q3 

1978Q1-
2004Q3 

1978Q1-
2004Q3 

1986Q3-
2003Q4 

Number of observations 108 108 108 108 108 70 
Average  2.32 2.69 1.99 2.42 2.06 3.88 
Standard deviation 1.67 2.32 1.60 2.05 1.48 9.86 
Correlation with the factor (a) 0.222 0.344 0.102 0.189 0.035 0.566 
Autocorrelation coefficients       
1 0.680 *** 0.575 *** 0.578 *** 0.555 *** 0.366 *** 0.541 *** 
2 0.675 *** 0.594 *** 0.539 *** 0.584 *** 0.480 *** 0.467 *** 
3 0.588 *** 0.500 *** 0.440 *** 0.498 *** 0.323 *** 0.289 ** 
4 0.697 *** 0.515 *** 0.449 *** 0.712 *** 0.635 *** 0.057  
5 0.455 *** 0.502 *** 0.319 *** 0.360 *** 0.207 ** -0.032  
6 0.409 *** 0.321 *** 0.327 *** 0.365 *** 0.283 *** -0.069  
7 0.368 *** 0.284 *** 0.278 *** 0.329 *** 0.182 * -0.007  
8 0.422 *** 0.265 *** 0.285 *** 0.451 *** 0.327 *** -0.051  
9 0.239 ** 0.172 * 0.242 ** 0.196 ** 0.031 -0.084  
10 0.223 ** 0.191 ** 0.160 * 0.225 ** 0.109 -0.026  
11 0.174 * 0.127 0.139 0.153 0.060 -0.234 * 
12 0.190 ** 0.109 0.147 0.205 ** 0.110 -0.168  

Notes. 
Mean and standard deviation are expressed as % per quarter.  
(a) The factor is assumed to be the 30-yrs mortgage rate for the real estate returns and the Nasdaq for the venture capital returns.   
***, **, * denotes rejection of the null hypothesis of a zero autocorrelation coefficient at the 1%, 5% and 10% significance level, 
respectively. It is assumed that the autocorrelation coefficient is distributed as a standard normal variable with mean zero and variance T for 
T being the number of observations. 
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Table 2. Smoothing behaviour inferred from MA models. 
 Real estate 
 National East South West Midwest 

Venture 
Capital 

Smoothing coefficients 
0θ  0.151 0.241 0.212 0.212 0.295 0.454 
1θ  0.058 0.070 0.047 0.087 0.057 0.164 
2θ  0.088 0.107 0.095 0.082 0.098 0.210 
3θ  0.051 0.043 0.085 0.081 0.058 0.172 
4θ  0.146 0.128 0.123 0.189 0.214 -- 
5θ  0.076 0.146 0.036 0.075 0.055 -- 
6θ  0.054 0.039 0.135 0.033 0.074 -- 
7θ  0.071 0.049 0.039 0.028 0.049 -- 
8θ  0.101 0.073 0.166 0.132 0.101 -- 
9θ  0.055 0.015 0.061 0.008 -- -- 
10θ  0.063 0.090 -- 0.073 -- -- 
11θ  0.026 -- -- -- -- -- 
12θ  0.061 -- -- -- -- -- 

Herfindahl 

index ∑=

k

i i0

2θ  0.093 0.131 0.131 0.132 0.170 0.307 
Standard deviation (% per quarter) 

Observed 1.67 2.32 1.60 2.05 1.48 9.86 
Corrected  5.47 6.41 4.41 5.63 3.60 17.80 

Contemporaneous correlation with the factor 
Observed 0.222 0.344 0.102 0.189 0.035 0.566 
Corrected  0.450 0.518 0.174 0.324 0.049 0.690 

Notes. 
The upper part shows the smoothing coefficients implied by the estimation of MA models where the maximum lag k is fixed according to 
the inspection of the autocorrelation function of each time-series. The lower part presents the corrected statistics, based on formulas (2) 
and (3) given in the body part of the text. 
 
 
 
Table 3. Correlation between illiquid assets. 

 National East South West Midwest 
Venture 
Capital 

National --- 0.889 0.801 0.926 0.806 0.035 
East 0.972 --- 0.619 0.714 0.706 -0.011 
South 0.900 0.743 --- 0.691 0.574 -0.032 
West 0.989 0.761 0.772 --- 0.647 0.113 
Midwest 0.901 0.777 0.629 0.682 --- 0.000 
Venture Capital 0.057 -0.015 -0.046 0.161 0.000 --- 

Notes. 
The Table reports the contemporaneous correlation coefficients between illiquid assets. The numbers on the upper part of the matrix are 
based on observed returns while the ones on the lower part are corrected for the smoothing process where correction is based on formula 
(5) and MA-implied smoothing coefficients. 
 
 
 
 



 18

Table 4A. Overestimation rate of the true variance with an AR(1) for various smoothing profiles. 
Parameters Implied characteristics Overestimation rate 

k 0θ  
(%) 

1θ  
(%) 

2θ  
(%) 

3θ  
(%) 

4θ  
(%) 

5θ  
(%) 

∑=

k

i i0
2θ

 
∑ −

= +
1

0 1
k

i ii θθ

 
*ρ  

T 
= 
∞  

T 
= 
25 

T 
= 
50 

T 
= 

100 

T 
= 

1000 

T 
= 

10000 
Straight-line smoothing 

1 50.0 50.0 -- -- -- -- 0.500 0.250 0.500 1.500 1.474 1.475 1.482 1.501 1.499 
            (1.09) (0.60) (0.43) (0.13) (0.04) 
2 33.3 33.3 33.3 -- -- -- 0.333 0.222 0.667 1.667 1.546 1.647 1.657 1.655 1.667 
            (1.45) (0.95) (0.60) (0.18) (0.06) 
3 25.0 25.0 25.0 25.0 -- -- 0.250 0.188 0.750 1.750 1.666 1.624 1.736 1.738 1.754 
            (2.09) (1.12) (0.74) (0.23) (0.07) 
4 20.0 20.0 20.0 20.0 20.0 -- 0.200 0.160 0.800 1.800 1.634 1.667 1.704 1.797 1.799 
            (2.25) (1.19) (0.86) (0.29) (0.09) 
5 16.7 16.7 16.7 16.7 16.7 16.7 0.167 0.139 0.833 1.833 1.529 1.750 1.761 1.854 1.831 
            (2.09) (1.76) (1.02) (0.31) (0.10) 

Sum-of-year smoothing 
1 66.7 33.3 -- -- -- -- 0.556 0.222 0.400 1.296 1.237 1.274 1.284 1.294 1.296 
            (0.87) (0.51) (0.35) (0.10) (0.03) 
2 50.0 33.3 16.7 --   0.389 0.222 0.571 1.425 1.266 1.367 1.377 1.427 1.423 
            (1.00) (0.70) (0.46) (0.14) (0.05) 
3 40.0 30.0 20.0 10.0 -- -- 0.300 0.200 0.667 1.500 1.331 1.433 1.440 1.493 1.501 
            (1.38) (0.84) (0.53) (0.18) (0.06) 
4 33.3 26.7 20.0 13.3 6.7 -- 0.244 0.178 0.728 1.551 1.376 1.411 1.538 1.548 1.553 
            (1.86) (0.96) (0.68) (0.21) (0.07) 
5 28.6 23.8 19.0 14.3 9.5 4.8 0.206 0.159 0.769 1.578 1.444 1.578 1.543 1.575 1.579 
            (1.82) (1.38) (0.71) (0.24) (0.07) 

Geometric smoothing ( 25.0=δ ) 
1 80.0 20.0 -- -- -- -- 0.680 0.160 0.235 1.098 1.008 1.092 1.090 1.098 1.099 
            (0.57) (0.42) (0.28) (0.08) (0.03) 
2 76.2 19.0 4.8 -- -- -- 0.619 0.154 0.249 1.029 1.013 0.999 1.025 1.029 1.028 
            (0.68) (0.40) (0.29) (0.08) (0.03) 
3 75.3 18.8 4.7 1.2 -- -- 0.605 0.151 0.250 1.007 0.994 0.994 1.000 1.009 1.008 
            (0.67) (0.41) (0.27) (0.08) (0.03) 
4 75.0 18.8 4.7 1.2 0.3 -- 0.600 0.150 0.251 1.002 0.970 0.987 1.006 0.999 1.001 
            (0.64) (0.41) (0.29) (0.08) (0.03) 
5 74.9 18.8 4.7 1.2 0.3 0.1 0.599 0.150 0.251 1.000 0.960 0.996 0.991 1.003 1.000 
            (0.66) (0.42) (0.27) (0.08) (0.03) 
Notes. 
Straight-line smoothing is characterized by ( )   1  1−+= kiθ , Sum-of-Years smoothing by ( ) ( )( )( )2/21/1 ++−+= kkikiθ  and 

geometric smoothing by ( )( )111 +−−= ki
i δδδθ . ∞=T  corresponds to the asymptotic values described in equation (8). For other 

values of T, we present both the average value and in parentheses the standard deviation obtained in 10,000 simulations, the true returns 
being assumed to be drawn from a standard normal distribution. 
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Table 4B. Overestimation rate of the true variance with an AR(2) for various smoothing profiles. 
Parameters Implied characteristics Overestimation rate 

k 0θ  
(%) 

1θ  
(%) 

2θ  
(%) 

3θ  
(%) 

4θ  
(%) 

5θ  
(%) 

∑=

k

i i0
2θ  

 
∑ −

= +
1

0 1
k

i ii θθ

 
∑ −

= +
2

0 2
k

i ii θθ

 
*
1ρ  *

2ρ  
T 
= 
∞  

T 
= 
25 

T 
= 
50 

T 
= 

100 

T 
= 

1000 

T 
= 

10000 
Straight-line smoothing 

1 50.0 50.0 -- -- -- -- 0.500 0.250 0.000 0.67 -0.33 0.75 0.63 0.71 0.72 0.75 0.75 
             (0.68) (0.4) (0.26) (0.08) (0.03) 
2 33.3 33.3 33.3 -- -- -- 0.333 0.222 0.111 0.80 -0.20 1.11 0.94 0.98 1.04 1.11 1.11 
             (1.07) (0.63) (0.45) (0.14) (0.04) 
3 25.0 25.0 25.0 25.0 -- -- 0.250 0.188 0.125 0.86 -0.14 1.31 1.05 1.13 1.25 1.30 1.31 
             (1.58) (0.84) (0.59) (0.17) (0.05) 
4 20.0 20.0 20.0 20.0 20.0 -- 0.200 0.160 0.120 0.89 -0.11 1.44 1.02 1.28 1.36 1.42 1.44 
             (1.68) (1.1) (0.69) (0.21) (0.07) 
5 16.7 16.7 16.7 16.7 16.7 16.7 0.167 0.139 0.111 0.91 -0.09 1.53 1.14 1.36 1.40 1.52 1.52 
             (2.04) (1.38) (0.77) (0.25) (0.08) 

Sum-of-year smoothing 
1 66.7 33.3 -- -- -- -- 0.556 0.222 0.000 0.48 -0.19 0.88 0.78 0.84 0.84 0.88 0.88 
             (1.04) (0.44) (0.29) (0.09) (0.03) 
2 50.0 33.3 16.7 --   0.389 0.222 0.084 0.67 -0.17 1.02 0.94 0.96 1.00 1.01 1.02 
             (1.16) (0.57) (0.4) (0.11) (0.04) 
3 40.0 30.0 20.0 10.0 -- -- 0.300 0.200 0.110 0.76 -0.14 1.13 0.91 1.01 1.09 1.12 1.13 
             (0.96) (0.65) (0.44) (0.14) (0.04) 
4 33.3 26.7 20.0 13.3 6.7 -- 0.244 0.178 0.116 0.82 -0.12 1.22 0.95 1.10 1.15 1.21 1.21 
             (1.3) (0.75) (0.53) (0.16) (0.05) 
5 28.6 23.8 19.0 14.3 9.5 4.8 0.206 0.159 0.113 0.85 -0.10 1.28 0.97 1.11 1.22 1.28 1.28 
             (1.29) (0.93) (0.61) (0.19) (0.06) 

Geometric smoothing ( 25.0=δ ) 
1 80.0 20.0 -- -- -- -- 0.680 0.160 0.000 0.25 -0.06 0.98 0.85 0.93 0.96 0.97 0.98 
             (0.81) (0.45) (0.3) (0.1) (0.03) 
2 76.2 19.0 4.8 -- -- -- 0.619 0.154 0.037 0.25 0.00 1.02 0.89 0.94 0.99 1.02 1.02 
             (0.79) (0.52) (0.33) (0.11) (0.03) 
3 75.3 18.8 4.7 1.2 -- -- 0.605 0.151 0.038 0.25 0.00 1.01 0.86 0.98 0.97 1.01 1.01 
             (0.73) (0.51) (0.33) (0.1) (0.03) 
4 75.0 18.8 4.7 1.2 0.3 -- 0.600 0.150 0.038 0.25 0.00 1.00 0.89 0.96 0.98 1.00 1.00 
             (0.85) (0.56) (0.34) (0.1) (0.03) 
5 74.9 18.8 4.7 1.2 0.3 0.1 0.599 0.150 0.038 0.25 0.00 1.00 0.85 0.94 0.99 1.00 1.00 
         *    (0.82) (0.53) (0.36) (0.1) (0.03) 
Notes. 
Straight-line smoothing is characterized by ( )   1  1−+= kiθ , Sum-of-Years smoothing by ( ) ( )( )( )2/21/1 ++−+= kkikiθ  and geometric 

smoothing by ( )( )111 +−−= ki
i δδδθ . ∞=T  corresponds to the asymptotic values described in equations (10a and 10b). For other values of 

T, we present both the average value and in parentheses the standard deviation obtained in 10,000 simulations, the true returns being assumed to 
be drawn from a standard normal distribution. 
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Table 5. Corrected statistics with autoregressive models. 
  Real estate  

 
 

National East South West Midwest 
Venture 
Capital 

AR(1) model 
First-order coefficient :  observed 0.687 0.576 0.595 0.559 0.368 0.535 
 theoretical 0.689 0.507 0.489 0.533 0.381 0.472 
Corrected standard deviation 3.90 4.49 3.17 3.86 2.19 17.93 
Corrected correlation with factor 0.194 0.426 -0.023 0.115 0.018 0.622 

AR(2) model 
First-order coefficient : observed 0.412 0.347 0.409 0.334 0.221 0.403 
 theoretical 0.366 0.315 0.241 0.358 0.231 0.364 
Second-order coefficient : observed 0.399 0.392 0.312 0.402 0.401 0.240 
 theoretical 0.469 0.379 0.507 0.328 0.395 0.231 
Corrected standard deviation 5.93 6.71 4.39 5.91 3.35 22.81 
Corrected correlation with factor 0.198 0.380 -0.027 0.167 -0.027 0.671 

Notes. 
The Table presents the results of the application of autoregressive (AR) models to unsmooth the real estate and Venture Capital 
returns. We present coefficients associated with AR models, both for their empirical estimated values and their theoretical values 
given in the body part of the text when one assumes that the smoothing process is similar to eq. (1) and where we replace smoothing 
coefficients s'iθ  with their empirical values deduced from MA models (see Table 2).  

 
 
Table 6. Autocorrelation structure for various economic and financial variables. 

Autocorrelation coefficients Variable Frequency Time period Number of 
observations Lag 1 Lag 2 Lag 3 Lag 4 

Financial variables 
Monthly 1965:1-2005:6 486 0.005 -0.037 0.017 -0.026 S&P 
Quarterly 1965:1-2005:1 161 0.045 -0.053 -0.0247 0.015 
Monthly 1986:1-2005:6 234 0.092 -0.133 ** -0.002 0.035 JP Morgan World 

government bond 
index 

Quarterly 1986:2-2005:1 76 -0.031 -0.091 0.064 -0.079 

Monthly 1972:2-2005:6 401 0.060 0.011 0.021 0.051 NAREIT 
Quarterly 1972:2-2005:1 132 0.092 0.000 0.034 0.103 

Economic variables 
US GDP Quarterly 1951:1-2005:1 217 0.321 *** 0.157 ** -0.023 -0.104 
 Yearly 1951-2004 54 0.032 -0.072 -0.212 0.054 
US CPI  Quarterly 1951:1-2005:1 217 0.761 *** 0.647 *** 0.734 *** 0.648 *** 
 Yearly 1951-2004 54 0.801 *** 0.545 *** 0.410 *** 0.396 *** 

Real estate variables 
Quarterly 1975:1-2005:1 120 0.568 *** 0.523 *** 0.566 *** 0.530 *** US Housing 

prices (OFHEO) Yearly 1976-2004 29 0.746 *** 0.517 *** 0.174 -0.105  
Quarterly 1992:1-2005:1 52 0.625 *** 0.580 *** 0.635 *** 0.760 *** France Housing 

prices (INSEE-
Notaires) 

Yearly 1992-2004 13 0.839 *** 0.643 ** 0.520 * 0.491 * 

Notes. 
All variables are transformed as one-period returns.  
***, **, * denotes rejection of the null hypothesis of a zero autocorrelation coefficient at the 1%, 5% and 10% significance level, 
respectively. It is assumed that the autocorrelation coefficient is distributed as a standard normal variable with mean zero and 
variance T for T being the number of observations. 
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Table 7. Smoothing behaviour inferred from ARMA(4,3) models for real estate indexes.  
 National East South West Midwest 

Implied smoothing coefficients 
0θ  0.441 0.561 0.425 0.392 0.589 
1θ  0.177 0.116 0.191 0.171 0.120 
2θ  0.228 0.240 0.197 0.237 0.184 
3θ  0.155 0.083 0.187 0.200 0.107 

      

Herfindahl index ∑=

k

i i0

2θ  0.301 0.392 0.291 0.279 0.407 
Corrected statistics 

      
Standard deviation 3.04 3.71 2.96 3.87 2.32 
Correlation with factor 0.277 0.384 0.129 0.255 0.038 

Notes. 
The upper part of the Table reports the smoothing coefficients implied by the estimation of ARMA(4,3) process on observed returns. 
The corrected statistics are obtained according to eq. (2) for standard deviation and eq. (3) for the contemporaneous correlation with 
the factor (here, the 30-yrs mortgage rate). The raw (“observed”) statistics are given in Table 2.  
 
 
 
Table 8. An asset allocation exercise. 

  Real estate 
national index 

Venture Capital Nasdaq 

Statistics 
Average   1.71 3.88 3.35 
Standard deviation Raw 1.56 9.86 14.47 
 Corrected 2.85 17.80 14.47 

1 0.106 -0.069 
0.106 1 0.566 

Correlation matrix 
(raw statistics on upper part ; 
corrected on lower part) -0.085 0.690 1 

Asset allocation: composition of optimal portfolios 
High risk aversion ( 0=λ ) 

 Raw 98.1% 0.0% 1.9% 
 Corrected 94.8% 0.0% 5.2% 

Moderate risk aversion ( 5.0=λ ) 
 Raw 42.9% 57.1% 0% 
 Corrected 75.0% 8.5% 16.5% 

Low risk aversion ( 1=λ ) 
 Raw 0.0% 100.0% 0.0% 
 Corrected 54.4% 21.2% 24.4% 

Notes. 
The Table presents the results of an asset allocation exercise involving two illiquid assets, real estate and Venture Capital, and a 
liquid one, the Nasdaq. The composition of portfolios is obtained through the standard Markowitz-quadratic problem of with short 
sales and budget constraints. The optimisation is done for raw and corrected statistics. Raw statistics are calculated over the period 
1986Q3-2003Q4. For real estate, the correction is based on an ARMA(4,3) model. For Venture Capital, it is based on a MA(3) model.  
 
 


