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This paper analyses the dynamic implications of an asset-pricing model with incom-

plete participation due to entry costs. It is shown that heterogeneity in entry costs can

lead to the existence of multiple stochastic sunspot equilibria, whereby the number of

agents in the market and asset prices �uctuate endogeneously over time in the absence of

fundamental uncertainty. Such asset-price �uctuations occur despite the uniqueness of the

deterministic equilibrium, and thus bear no link to the usual notion of steady�state indeter-

minacy. In addition to excess volatility, the equilibria exhibit predictable and conditionally

heteroskedastic returns.
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1 Introduction

This paper analyses the impact of incomplete participation, due to the presence of entry costs, on

the price dynamics of a speculative asset. It focuses on the possible destabilising nature of limited

participation in asset markets, and shows that incomplete participation in the deterministic

steady state may allow for the existence of stochastic equilibria where arbitrary, self-ful�lling,

beliefs of investors cause �uctuations in both the number of agents in the market and asset

prices.

From an empirical point of view, the fact that participation in some speculative markets

(e.g., stock markets) is incomplete is fairly uncontroversial. This point was made by Mankiw and

Zeldes (1991) to explain the cross-sectional patterns of returns on di¤erent assets (i.e., the equity

premium puzzle). Moreover, there is considerable evidence that stock market participation varies

over time, as shown by the dramatic increase in participation in Europe and the US during the

1990�s (Guiso et al., 2003). At higher frequencies, a great number of empirical studies have shown

that changes in asset-price volatility (as measured by daily squared price changes) are related to

variations in trading volumes, with high trading volumes being associated with high volatility

(e.g., Karpo¤, 1987). Looking further into this correlation, Jones et al. (1994) established that

it is almost entirely accounted for by changes in the number of transactions that take place in

the market, rather than by changes in the size of individual transactions. To the extent that

daily changes in the number of orders placed in a particular market re�ect variations in the

number of investors who are actually active in that market (rather than a pure recomposition

of their orders), time-varying participation may be expected to substantially a¤ect the dynamic

behaviour of asset prices in the short run (besides its potential e¤ect on the secular trend in

prices and returns).

A natural explanation for incomplete market participation is that investors have to pay entry

costs, which re�ect fees, information-gathering costs, processing costs and the like, before they

can convey buying or selling orders to the market. As a consequence, investors will weigh the

expected utility gain from entering the market against the utility loss from paying this entry

cost. If investors di¤er in terms of certain characteristics such as preferences, wealth, or the

size of the entry costs to be paid, some agents will decide to participate while others may not,

2



leading to situations of incomplete participation. If this explanation is correct, participation in

speculative markets is driven by both entry costs and the risk/return trade-o¤ investors face.

Since returns and risk typically vary over time (e.g., Engle, 2004, Poterba and Summers, 1986

and 1988), we expect participation to be time-varying as well, and changing participation levels

will in turn impinge on equilibrium prices, returns, and risk. As an example, Orosel (1998) shows

that the price process resulting from incomplete participation typically magni�es the e¤ect of

dividend innovations by altering the �ow of agents in and out of the market.

This paper shows that the feedback loop between asset prices and participation levels may

have more dramatic implications. More precisely, heterogeneity in entry costs may lead to

the existence of multiple, self-ful�lling stochastic equilibria whereby the ex ante expectation

that prices will �uctuate generates a pattern of changing participation which, via its e¤ect on

equilibrium prices, validates this expectation ex post. To make this point clear, the framework

introduced below assumes that the asset being traded bears no income risk, so that the only

source of uncertainty lies in the volatility of investors�expectations.

The mechanism underlying such equilibria and their properties is reasonably intuitive. With

mean-variance preferences (a decision criterion that approximates optimal choices in our model),

high payo¤ volatility may depress the price of a risky asset to the extent that the resulting

expected return is high enough to increase the expected utility from trading the asset (Pagano,

1989b). Now suppose that investors expect market participation to change over time. To

attract a su¢ ciently large number of investors, so that participation is high, the (expected)

risk-return trade-o¤ must be more favorable relative to a state with lower participation. In

our model, this property comes about when the high participation state has substantial payo¤

risk but relatively low asset prices and high expected returns, the prospect of which su¢ ciently

increases the attractiveness of the asset to compensate for the greater risk. Conversely, states

with relatively low investor participation have low payo¤ risk but relatively high prices and low

expected returns, which latter deter investors with high entry costs from entering the market.

As subsequently will be shown, for this mechanism to work we require the stochastic sunspot

process behind the market participation dynamics (and thus equilibrium asset prices) to be

su¢ ciently heteroskedastic to bring about substantial di¤erences in the conditional variance of

asset payo¤s across states. When this is the case, expectations of changes in the participation
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level become self-ful�lling and create a payo¤ risk, which we label endogenous participation risk,

which occurs independently of that associated with the asset�s income. This mechanism is one

possible cause of excess volatility in asset prices, since no fundamental uncertainty is needed for

prices to �uctuate randomly. It will be shown that these equilibria also exhibit some well-known

properties of empirical asset returns, such as predictability and conditional heteroskedasticity

(i.e. time-varying risk).

A number of authors have investigated the implications of incomplete participation for the

multiplicity of equilibria in asset markets. In a pioneering contribution, Pagano (1989a) analysed

the negative feedback between market volatility and the level of market participation. High

participation lowers the impact of idiosyncratic demand shocks on asset prices, thereby reducing

asset price volatility and making participation more attractive. Multiple steady states can then

appear as the mere expectation of high participation levels attracts more investors, whereas

expectation of low participation deters investors from participating. In a related article, Allen

and Gale (1994) considered the impact of aggregate liquidity shortages on the existence and

properties of asset market equilibria. Both papers focus on the volatility and welfare implications

of (possibly multiple) participation levels, i.e., the steady states of the corresponding models. In

contrast, we here analyse the possibility of self-ful�lling stochastic equilibria (sunspot equilibria),

where the steady state is unique and the only source of uncertainty is extraneous.

The possibility of sunspot equilibria in asset markets has long been recognised in dynamic

macroeconomic models plagued with market imperfections. For example, Aiyagari (1988) and

Azariadis and Chakraborty (1998) argue that sunspot equilibria o¤er a natural theory of ex-

cess volatility in asset prices, whereas Challe (2004) shows that they typically imply that asset

returns are predictable. There are two dimensions in which the model developed below di¤ers

from this previous work. From a theoretical point of view, our model relates self-ful�lling asset

price volatility to the �ows of agents in and out of speculative markets. The model is thus

rooted in the market microstructure approach to market participation (e.g., Pagano, 1989a and

1989b), as opposed to the dynamic general equilibrium framework favoured by macroecono-

mists.1 Methodologically, our approach di¤ers from that in previous contributions (including

1Of course, others factors than entry cost may produce time-varying participation and asset prices. For

example, it has been recently argued that binding and time-varying borrowing constraints may restrict the
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Aiyagari, 1988, and Challe, 2004), which generate asset-price sunspots within dynamic models

displaying indeterminacy, that is, a multiplicity of dynamic equilibrium trajectories converging

towards the steady state. As is well-known from the literature on capital accumulation and

growth (e.g., Benhabib and Farmer, 1994 and 1998), indeterminacy is a su¢ cient condition for

sunspot �uctuations to arise in dynamic models as it provides the economy with the multiple

(deterministic) equilibria on which agents may randomly coordinate their actions at any point

in time. In contrast, in our approach the kind of self-ful�lling expectations that may occur arise

independently from (and, in fact, despite the lack of) steady-state indeterminacy.

Section 2 introduces the model and derives its deterministic equilibrium. Section 3 proves the

existence of equilibria with endogenous participation risk and analyses their volatility properties.

Section 4 provides a worked example of stochastic equilibrium, and Section 5 concludes.

2 The model

2.1 Assets and market structure

The analytical framework consists of an overlapping generations model in which investors who

live for two periods maximise the expected utility of �nal consumption (i.e., they do not consume

in the �rst period of their life). Investors entering the market at date t receive an endowment

e > 0 and may trade two assets. One is a safe asset in perfectly elastic supply that can be used

to borrow or lend without limit at a gross interest rate of R > 1. The other asset (referred to

as �the asset�in the remainder of the paper) is in �xed supply (normalised to 1) and yields a

constant dividend d per share in every period. The price of the asset at date t is denoted pt.

There is a continuum of investors of mass 1 indexed by i and uniformly distributed along the

interval [0; 1]. Before entering the market for risky assets and issuing buying or selling orders

there, investor i must pay a �xed cost � (i) � 0 (no entry cost is required in order to trade the

househoulds�ability to trade assets optimally and a¤ect equilibrium prices (e.g., Azariadis and Kaas, 2007, and

Constantinides et al., 2002). Our paper di¤ers from this approach in terms of both the source of participation

changes, and the way participation a¤ects prices.
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safe asset). The budget constraint of investor i at date t is thus

ptX
i
t +M

i
t + z� (i) � e;

where X i
t is investor i�s demand for risky assets, M

i
t is the investor�s demand for safe assets,

and z is a dummy variable taking the value 1 if the investor decides to enter the market for

risky assets, and 0 otherwise. From the budget constraints of investor i at dates t and t+1; the

terminal consumption of investor i is given by:

Cit+1 = M i
tR +X

i
t (pt+1 + d)

= R (e� z� (i)) +X i
t (pt+1 + d�Rpt) : (1)

The equilibria considered in this paper are in general stochastic and involve �uctuations in

the asset price. The resulting payo¤ risk is measured by the conditional variance of asset prices,

�2t � vart (pt+1).

2.2 Preferences and entry decisions

Investors are endowed with constant absolute risk aversion (CARA) utility functions. Let  > 0

denote the common risk-aversion coe¢ cient of investors, and �Ci the unconditional mean of Cit

(i.e., the mean consumption of investors with entry cost � (i)). In the remainder of the paper, we

shall consider �uctuations in asset prices (and thus in asset payo¤s and individual consumption

levels) which take place over a small, continuous support. Therefore, we can follow Levy and

Markovitz (1979) and consider the quadratic approximation to the utility function around �Ci to

derive the following local mean-variance criterion:2

maxEt
�
� exp

�
�Cit+1

��
' ai + bi

�
Et
�
Cit+1

�
� 
2
Vart

�
Cit+1

��
; (2)

2The mean-variance criterion has sometimes been criticised on the grounds that it may lead agents to invest

into stochastically dominated assets (e.g., Hanoch and Levy, 1969). In our model, prices are trend-reverting and

the expected return to risky assets always exceeds the safe rate, so this would happen if the buying price of the

asset were so low that the risky asset were bound to do better than the safe asset ex post (due to the potential

capital gains involved). However, this cannot occur if some uncertainty with arbitrarily small variance but

unbounded support is added to dividends or the asset supply, as is generally assumed in overlapping generations

models with mean-variance investors (through the use of normally distributed payo¤ risk, e.g., Hellwig, 1982,

Pagano, 1989a, and Spiegel, 1998).
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where ai � � (1 + ) exp
�
� �Ci

�
and bi �  exp

�
� �Ci

�
. Note that �Ci (and thus ai and bi) will

typically vary across agents, due to heterogeneity in entry costs and entry decisions. However,

the utility function we have chosen ensures that optimal portfolios depend only on , and are

thus independent of �Ci.

When deciding whether to enter the market, investors solve a two-stage decision problem

(e.g., Pagano, 1989a). First, they compute their (notional) optimal asset demand conditional

on participation, and the associated level of expected utility, UPt (i); and second, they compare

this level of utility to that associated with not participating, UNt (i).

First stage. Assume that �2t > 0 (the case with �
2
t = 0 is the deterministic equilibrium analysed

in Sec. 2.3 below). If investor i decides to enter the market, then from Eqs. (1)�(2) optimal asset

demand is

X̂ i
t =

Et (pt+1) + d�Rpt
�2t

: (3)

Second stage. Investor i participates in the asset market if the expected utility from participation

(i.e., setting z = 1 and X i
t = X̂ i

t) is greater than that from not participating (z = X i
t = 0).

From Eqs. (1) and (2), the latter is simply UNt (i) = ai+ bieR. Using Eqs. (1)�(3), the expected

utility from participation is

UPt (i) = a
i + bi

 
R (e� � (i)) + (Et (pt+1) + d�Rpt)

2

2�2t

!
: (4)

Investor i then participates if, given the current asset price and the conditional distribution

of the asset payo¤, UPt (i) � UNt (i), or:

(Et (pt+1) + d�Rpt)
2R�2t

2

� � (i) : (5)

Finally, let investors be ordered along [0; 1] such that � (:) is non-decreasing. Given the entry

condition (5), if investor i� wishes to enter the market for a given conditional payo¤ distribution,

Et (pt+1 + d) ; �
2
t , then all investors i < i

� will also wish to do so. Moreover, it is assumed that

� (:) is continuous over [0; 1] ; that there exist ~{ 2 (0; 1) such that � (i) = 0 for i � ~{ (i.e., there is a

positive mass of investors with zero entry costs), and that � (i) is positive and strictly increasing

in i for i > ~{.3

3Assuming that there is a positive mass of investors with zero entry costs is essential for the deterministic
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2.3 Deterministic equilibrium

It is useful to derive, as a benchmark case, the deterministic equilibrium of this economy. In this

equilibrium, Vart
�
Cit+1

�
= �2t = 0 and preferences become linear in �nal consumption. Prices

are then given by a risk-neutral, no-arbitrage condition according to which agents facing zero

entry costs trade the asset until its gross return is equal to R. Using (1)�(2), this condition is:

pt+1 + d�Rpt = 0: (6)

The unique non-explosive price path of the deterministic economy is then:

�p = d= (R� 1) ; t = 0; 1; :::; (7)

which we may term the fundamental value of the asset, i.e., the price that would prevail if no

extraneous uncertainty a¤ected investors�beliefs. Note that, along the deterministic equilibrium,

investors facing positive entry costs never enter the market, because their return from trading

the asset, net of entry cost, is strictly less than R.

3 Equilibria with endogenous participation risk

In what follows we �rst venture, and then prove the existence of, equilibria where market partic-

ipation and asset prices �uctuate according to arbitrary (but ultimately rational) expectations

of investors. We thus proceed by construction. First, we assume that investors may rationally

expect market participation at date t, it, to �uctuate over time. Second, we derive the condi-

tional distribution, (Et (pt+1) ; �2t ); that prices must obey for the market to clear given current

participation, it. And third, we provide a simple process for participation dynamics that satis�es

equilibrium conditions.

3.1 Market clearing and equilibrium prices

Market clearing requires that total market demand for the asset be equal to 1 when the (pos-

sibly time-varying) level of participation is it. Using Eq. (3), individual asset demands can be

equilibrium computed in Sec. 2.3. to be well de�ned. Dropping this assumption (while maintaining the continuity

of the � (:) function) leads to an economy where only stochastic equilibria may exist.
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aggregated across participating investors to obtain, for all dates:Z it

0

X̂ i
tdi = it

�
Et (pt+1) + d�Rpt

�2t

�
= 1: (8)

Note �rst that Eq. (8) can be used to derive the expected net payo¤ accruing to investors

when participation is it and the conditional variance of asset prices is �2t :

Et (pt+1) + d�Rpt = �2t=it (9)

Eq. (9) summarises the risk-return tradeo¤ faced by investors in equilibrium. When the risk

associated with holding the asset is high (low), the asset commands a relatively high (low) ex-

pected net payo¤. The impact of market participation, it; on this tradeo¤ re�ects the usual

e¤ect of the number of investors on risk-sharing in incomplete participation models (e.g., Pagano,

1989b). More speci�cally, for a given variance �2t , higher participation leads to a smaller pro-

portion of risky assets in any participating investor�s portfolio (given the �xed supply of risky

assets), and thus lower values of both the portfolio risk and the required consumption premium.

Using (9) allows us to substitute prices out of the entry condition (5). We �nd that any

stochastic equilibrium must satisfy the following inequalities, for all t � 0:

�2t=2Ri
2
t � � (i) for i � it;

< � (i) for i > it: (10)

The left-hand side of (10) is the utility gain that an investor expects from joining the asset

market rather than staying out of it when current participation is it. For the decisions of investors

as a whole to generate a participation level of it, it must be the case that only investors facing

entry cost less than (or equal to) � (it) �nd it worthwhile to join, while those facing � (i) > � (it)

prefer to stay out (the right-hand side of (10)). Given the assumed continuity of �(:), it follows

that (10) must hold as an equality for the last entrant, or marginal investor at date t, who is

precisely indi¤erent between entering and staying out of the market when participation is it.

This implies that along any stochastic equilibrium the conditional variance of asset prices and

the level of participation are related as follows:

�2t = 2 (R=) i
2
t � (it) : (11)
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Note that when �2t = 0 we have again the deterministic equilibrium of Sec. 2.3, where par-

ticipating agents are in positive mass (i.e. it = ~{ > 0), but all face zero entry costs (i.e.,

� (i) = � (~{) = 0). Solving (9) for pt and using (11), we �nd that current asset prices depend on

current participation and future prices as follows:

pt = (Et (pt+1) + d) =R� 2it� (it) (12)

Finally, iterating (12) forwards under the no-bubble condition limn!1Et (pt+n) =R
n = 0, the

equilibrium price of the asset at date t can be written as a function of current and future levels

of participation:

pt =
d

R� 1 � 2Et

 1X
j=0

R�jit+j� (it+j)

!
(13)

In the deterministic equilibrium, it = ~{ and � (it) = 0 for all t � 0, so that (13) collapses to

(7). Fluctuations in participation levels, if possible, must thus involve values of it higher than ~{

for some t, which in turn would cause �uctuations in asset prices according to Eq. (13).4

3.2 Existence of stochastic equilibria

The question of whether stochastic equilibria exist amounts to asking whether there exists non-

degenerate stochastic processes for market participation, fitg1t=0 ; asset prices, fptg
1
t=0, and con-

ditional variance, f�2tg
1
t=0, where �

2
t = vart (pt+1), that satisfy the market-clearing condition (8),

the payo¤-variance condition (11) and the boundary condition it 2 (0; 1] ; for all t � 0: The

following proposition establishes that this is the case.

Proposition 1 (Existence). There exist equilibria where participation and asset prices change

over time (i.e., where �2t > 0) provided that � (1) > 2R. Along such equilibria, asset prices

always stay below their fundamental value, �p = d= (R� 1).

Proof. The proof is by construction. De�ne the function It = f (it) � 2it� (it), and notice that

f (:) is continuous and that f (it) = 0 for it � ~{ while f (it) > 0; f 0 (it) > 0 for it > ~{. Assume
4Since it 2 [0; 1], Et(

P1
j=0R

�jit+j� (it+j)) is bounded above, so d can always be set to ensure that equilibrium

prices are non-negative at all times.
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that It 2 (0; 2� (1)] (that is, it > ~{ for all t � 0), and that It obeys the following process:

It = �I + F (It�1) �t; (14)

where �I = 2�{� (�{) is the unconditional mean of It, F (:) is a sensitivity function (to be speci�ed),

and f�tg
1
t=0 is a white noise process with symmetric distribution, bounded support [��̂; �̂],

�̂ > 0, and such that Et
�
�t+1

�
= 0 and vart

�
�t+1

�
= 1. Substituting (14) into (12)�(13) and

rearranging, we may rewrite the current price of the asset as follows:

pt =
�
d� �I

�
= (R� 1)� It: (15)

From (14)�(15), the conditional variance of asset prices is �2t = vart (It+1) = F (It)
2. Now,

�2t must also satisfy Eq. (11) for the implied price process to be an equilibrium. Rewriting �
2
t in

(11) as RItf�1 (It) = and equating it to F (It)
2, we �nd that the sensitivity function must be:

F (It) =
p
RItf�1 (It) =; (16)

where F (It) is strictly increasing in It.

Lastly, the feasibility of stochastic equilibria requires that It stay within the interval (0; 2� (1)]

for all t. From (14), It is bounded above if

I = �I + F (I) �̂ (17)

has a unique, positive and �nite solution I� (the upper bound I� may be seen as the limit of It

as the innovation �t takes its maximium value �̂ in�nitely many times). Using (16), (17) can be

rewritten as � (I) = � (I), where � (I) � 1 � �I=I and � (I) � �̂
p
Rf�1 (I) =I. Both � (:) and

� (:) are continuous over
�
�I; 2� (1)

�
, while �

�
�I
�
= 0 and �

�
�I
�
> 0. Thus, (17) has at least one

solution I� 2
�
�I; 2� (1)

�
if � (2� (1)) < � (2� (1)), that is, if

 > ̂ = 2� (1)R�̂2=
�
2� (1)� �I

�2
: (18)

Moreover, this solution is unique since � (:) is strictly increasing and � (:) is strictly decreasing.

To establish this latter point, note that � 0 (I) < 0 is equivalent to I@f�1 (I) =@I < f�1 (I). As

I = f (i) = 2i� (i) (and thus @f�1 (I) =@I = 1=f 0 (i) = 1= (2� (i) + 2i�0 (i))), � 0 (I) < 0 is

equivalent to �0 (i) > 0 (which is true for i > ~{ by assumption).
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Given the maximum possible value taken by the sensitivity function, F (I�) ; and the fact

that � has lower bound ��̂, it follows that It � I� = �I�F (I�) �̂ for all t (i.e., It is bounded below

by I�). I� solves (17), so the condition I� > 0 is equivalent to 2�I > I�; and since I� < 2� (1),

a su¢ cient condition for 2�I > I� is that �I � � (1) : We look for the smallest possible value of

̂ in (18) guaranteeing the feasibility of stochastic equilibria. Amongst the class of symmetric

distributions with support [��̂; �̂] and satisfying Et
�
�t+1

�
= 0, vart

�
�t+1

�
= 1; the one with the

lowest �̂ is �t = 1 w.p. 1/2, �t = �1 w.p. 1/2 (so that �̂ = 1). Then, setting �̂ = 1 and �I = � (1)

in (18) gives ̂ = 2R=� (1). Finally, from (11) and the fact that �2t > 0, we have that it� (it) > 0;

then, Eq. (13) implies that prices are always less than d= (R� 1)�

The intuition for the su¢ cient condition stated in proposition 1 can be understood from

Eq. (11), which relates the conditional variance of prices to the level of participation. In short,

Eq. (11) states that low risk aversion coe¢ cients, , or high values of the riskless rate, R, would

generate stochastic equilibria with a relatively high variability of next period�s prices, pt+1, given

current participation, it. Now, from Eq. (13), the conditional variance of prices is positively

related to that of next period�s participation. Since the variability of future participation must

be small for participation to stay within the required interval,  must be su¢ ciently high,

and/or R su¢ ciently low, for stochastic equilibria to exist. Finally, that prices �uctuate below

their fundamental value is an immediate consequence of the positive risk premium required by

investors entering a market where participation risk a¤ects prices.

It is important to notice that the kind of self-ful�lling �uctuations occurring in our framework

di¤er from the indeterminacy and sunspot types traditionally used when analysing the stability

properties of in�nite-horizon models. In those models, stochastic equilibria are typically con-

structed by randomising over a local in�nity of deterministic trajectories converging towards the

steady state, along the lines described in Woodford (1986). The generality of this latter approach

has led to its widespread use in a variety of dynamic settings including growth, monetary theory,

and business cycles �see Benhabib and Farmer (1999) for a general overview, as well as Aiyagari

(1988), Azariadis and Chakraborty (1998), and Challe (2004) for applications to asset pricing

issues. The mechanism underlying asset-price �uctuations in our model is qualitatively di¤erent

from this approach, since our deterministic equilibrium is unique (see Sec. 2.3). In our model, the

12



possibility of self-ful�lling asset-price �uctuations is related to the dynamic interactions between

risk and returns in equilibrium, rather than jumps across deterministic paths that may occur

in dynamic models with indeterminate steady states. These interactions are described in more

detail in the next Section.

3.3 Properties of stochastic equilibria

Although Eqs. (14)�(16) may potentially generate a large set equilibria with time-varying par-

ticipation levels (depending on �I and the distribution of �), all such equilibria share some robust

properties that allow for an intuitive interpretation of the mechanism at work. These properties

are summarised in the following proposition.

Proposition 2 (Prices, returns and risk). Along the stochastic equilibria de�ned by

Eqs. (14)�(16), the higher is current participation, it, the lower is the asset price, pt, and the

higher are both the expected net payo¤, Et (pt+1) + d�Rpt, and the payo¤ variance, �2t .

Proof. That high (low) participation is associated with high (low) payo¤ risk follows from (11),

while the negative relation between asset prices and participation can be seen from Eq. (15) and

the fact that It is a continous, increasing function of it when it > ~{. Substituting (11) into (9)

shows that the expected net payo¤ must be high (low) when participation is itself high (low)�

In other words, stochastic equilibria with changing participation are characterised by con-

ditional heteroskedasticity, i.e., time-variation in the conditional variance of the asset payo¤.

Since varying participation levels are accompanied by �uctuations in asset prices in the absence

of income risk, prices also feature excess volatility. Finally, the fact that investors expect high

returns when participation is high and low returns when participation is low implies that returns

are predictable. These three properties are closely connected. It is precisely because the risk

associated with holding the asset is relatively high when participation is high that the price

must then be low, in spite of the larger number of market participants. At this point we may

wonder why a state where the asset is high-risk attracts more participants than a state where

it is low-risk. Would not the lower risk associated with the asset when participation is low also

attract investors who are willing to buy the asset when participation is higher? The reason for
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this apparent paradox is that, for a certain level of risk, agents facing high entry costs require

a higher return to participate than agents facing comparatively low costs. When participation

is high, high risk causes the current price to be low, implying that expected returns are high,

and high enough to make it worthwhile for a relatively large number of investors to participate

despite the high associated risk. Conversely, when participation is low then the price of the asset

is high, making expected returns low enough to deter many agents from participating despite

the low associated risk.

Such times-series properties of asset prices have long been documented in empirical work.

The excess volatility of asset prices (or, to be more precise, their high volatility relative to

that of dividends), as well as the close connection between volatility and the predictability

of asset returns, are now well-established and understood following the work of Shiller (1981)

and Campbell and Shiller (1989) (see also Challe, 2004, and Poterba and Summers, 1988).

On the other hand, �uctuations in prices and returns characterised by time-varying, persistent

volatilities are at the root of the empirical success of dynamic volatility models in �nance (see

Poterba and Summers, 1986, for an early contribution, and Engle, 2004, for a recent overview

of this approach).

In our model, these �uctuations are related to changes over time in the number of investors

who actively participate in the market for risky assets, higher participation being associated with

higher price volatility. Note that the empirical literature on asset-price formation has pointed

out such a correlation. First, daily absolute or squared price changes �two typical measures

of asset-price volatility in the empirical microstructure literature� have long been recognised

to be positively related to transaction volume (this literature is surveyed in Karpo¤, 1987).

And second, virtually all of the time-variation in transaction volumes is explained by changes

in the number of transactions that take place in the market, rather than by changes in the

size of orders placed in the market by investors, as predicted by asset-pricing models with

constant participation (see Jones et al., 1994). Since the number of such orders can arguably

be interpreted as a proxy for the number of investors who are actually active in the market, the

relation between volatility and participation implied by the model seems to be broadly consistent

with the evidence.5

5Note that lower participation in one market does not necessarily mean lower participation in risky asset
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4 An example

As a numerical illustration of propositions 1 and 2, take  = 8, e = d = 10, R = 1:05; and the

following continuous cost function (plotted in the �rst panel of Figure 1):

� (i) =

8>>><>>>:
0 for i 2 [0; 0:1] ;

2i� 0:2 for i 2 (0:1; 0:2] ;

i for i 2 (0:2; 1] :

We consider �uctuations in it that obey the stochastic process characterised by Eqs. (14)�(16),

and compare them to the deterministic equilibrium. From Eq. (7) and the assumed cost function,

the level of asset prices and participation along the deterministic equilibrium are �p = 200 and

it = 0:1 for all t. To construct the stochastic equilibrium, focus on the case where it 2 (0:2; 1]

(so that It � 2it� (it) = 2i2t 2 (0:08; 2], and take �{ =
p
0:5 (so that �I = 1 = � (1)). From Eqs. (11)

and (15), asset prices �uctuate around the value (d� IR) = (R� 1) = 179 < 200; while their

conditional variance oscillates around 2 (R=)�{3 = 0:0928 > 0: From Eqs. (14) and (16), as well

as our chosen cost function and value of �I, the dynamics of It can be written as:

It = 1 +

�q
R= (21=2)� I3=4t�1

�
�t; (19)

where the innovation process, f�tg, is here assumed to be uniformly distributed over
�
�
p
3;
p
3
�

(that �̂ =
p
3 implies that Et

�
�t+1

�
= 0 and vart

�
�t+1

�
= 1, as our normalisation requires).

In the present example, the conditions on the boundedness of It are more stringent that in the

general case studied in the proof proposition 1, for two reasons. First, it must stay within the

interval (0:2; 1] (i.e., where � (i) = i); the relevant lower bound for It is thus 0:08, rather than 0.

And second, our su¢ cient condition � (1) > 2R was derived using the lowest possible value of

�̂ (= 1), given the assumed �rst and second moments of �t, while the example has �̂ =
p
3 > 1.

However, our chosen parameters do guarantee that It stays within the interval required for the

feasibility of the equilibrium. From Eq. (17), the upper bound I� is the unique solution to:

I = 1 +

�q
R= (21=2)� I3=4

�
�̂;

markets generally. In reality, portfolio rebalancing by investors may lead lower participation in one market to

increase participation in others. Of course, our model precludes this possibility by assuming a single risky asset.
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which gives I� = 1:8303 (< 2; as required). The lower bound is then I� = 1�
p
3R=21=2�I�3=4 =

2�I� = 0:1697 (> 0:08; as required). Thus, setting I0 = �I = 1; an in�nite sequence of It starting

from I1 can be generated using (19), that will satisfy all equilibrium conditions. The implied

values of it, �2t and pt naturally follow from Eqs. (11)�(13). The second panel of Figure 1 plots

the negative relation between prices (solid line, left scale) and conditional variances (dotted line,

right scale) for a particular draw of sunspot shocks over 200 periods.

FIGURE 1 HERE

5 Concluding remarks

This paper analyses the link between the presence of entry costs in the market for a speculative

asset and the existence of self-ful�lling, stochastic equilibria with time-varying participation

levels and asset prices. In these equilibria, the ex ante expectation that prices will �uctuate

over time generates a time-pattern of participation in the market that validates this original

expectation ex post, even though the asset bears no income risk. This model has been shown to

be consistent with some well-known stylised stock-market facts, such as the excess volatility of

asset prices as well as the predictability and conditional heteroskedasticity of asset returns.

The results have been derived under the restrictive assumption of homogenous, constant

absolute risk aversion preferences. Most results carry over in a more general set-up that retains

the CARA assumption whilst dropping that of homogenous risk-aversion, provided that some

minimal continuity assumptions about agents�types are made (see the Appendix for a sketch of

this generalisation). We expect similar stochastic equilibria to exist under more general utility

functions, although the speci�c conditions under which this conjecture is true remain to be

established.
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Appendix: Heterogenous risk aversion

This Appendix generalises our results to the case where risk aversion, in addition to entry costs,

may di¤er across investors. More speci�cally, assume that investor i is a CARA maximiser with

risk-aversion coe¢ cient  (i) ; where  (i) 2 [min; max] and 0 < min < max < 1. Investor i

now chooses the asset portfolio that approximately maximises

Et
�
� exp

�
� (i)Cit+1

��
' âi + b̂i

�
Et
�
Cit+1

�
�  (i)

2
Vart

�
Cit+1

��
; (20)

where âi � � (1 +  (i)) exp
�
� (i) �Ci

�
and b̂i �  (i) exp

�
� (i) �Ci

�
: The basic di¤erence from

the homogenous-preferences speci�cation of Sec. 3 is that optimal portfolios may now di¤er

across investors. However, keeping the CARA assumption ensures that investors�demand for

risky assets does not depend on investor wealth (although the latter may a¤ect their utility

through âi and b̂i). Maximising (20) subject to (1) yields the following notional asset demand

for investor i:

X̂ i
t =

Et (pt+1) + d�Rpt
 (i)�2t

:

We now rank investors in non-decreasing order of  (i) � (i) : We further assume that both

 (i) and � (i) are continuous functions, and that � (i) = 0 for i � ~{ and � (i) > 0 for i > ~{, where

~{ 2 (0; 1), and that the function h (i) �  (i) � (i) is increasing (and thus invertible) over (~{; 1].

Comparing the utility from participation with that from staying out of the market as before, we

�nd that investor i participates if, and only if,

(Et (pt+1) + d�Rpt)
2R�2t

2

�  (i) � (i) : (21)
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The market-clearing condition now becomes:Z it

0

X̂ i
tdi =

�
Et (pt+1) + d�Rpt

�2t

�Z it

0

 (i)�1 di = 1; (22)

where
R it
0
 (i)�1 di is continuous and strictly increasing in it. Solving (22) for the expected net

payo¤, Et (pt+1) + d � Rpt, and substituting the resulting expression into (5), we �nd that the

sorting rule (analogue of Eq. (10)) is now:

�2t

2R (i)
�R it

0
 (i)�1 di

�2 � � (i) for i � it; (23)

< � (i) for i > it:

In short, the latter inequality states that investor i participates if, and only if, the expected

utility from trading the asset outweighs the trading cost, � (i). Greater risk aversion lowers the

utility from trading the asset (given �2t and
R it
0
 (i)�1 di), thereby making entry relatively less

valuable for investor i. Given the continuity assumptions maintained throughout, inequality (23)

must hold as an equality for the marginal investor, which implies that the conditional variance

of asset prices is related to participation as follows:

�2t = 2R� (it)  (it)

�Z it

0

 (i)�1 di

�2
: (24)

Solving (22) for pt, using (24), and then iterating forwards the resulting expression while

focusing on non-explosive price solutions, we �nd that the level of asset prices is now:

pt =
d

R� 1 � 2Et

 1X
j=0

R�j� (it)  (it)

Z it

0

 (i)�1 di

!
:

We can construct stochastic equilibria for the heterogenous risk-aversion economy in an

analogous manner to Sec. 3.2 for the homogenous risk-aversion case. More speci�cally, de�ne

the continuous function Jt = g (it) � 2� (it)  (it)
R it
0
 (i)�1 di, where by construction g (it) = 0

for it � ~{ and g (it) > 0; g0 (it) > 0 for it > ~{ (so that Jt is uniquely de�ned by it for it > ~{).

Assume that it > ~{ 8t, and that Jt evolves according to Jt = �J + G (Jt�1) �t; where �J is the

mean of fJtg1t=0, f�tg
1
t=0 is as in Sec. 3.2, and G (Jt�1) is a sensitivity function. Substituting the

Jts into the price process, we may rewrite the latter as:

pt =
�
d� �J

�
= (R� 1)� Jt; (25)
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implying that the conditional variance of prices is �2t = G (Jt�1)
2 : The sensitivity function

G (Jt�1) must be such that (24) holds in every period. From the de�nitions of g(:) and h (:)

(both of which being continuously increasing, and thus invertible, over (~{; 1]), the variance in

(24) can be written as �2t = RJ
2
t =2h (g

�1 (Jt)) ; giving the sensitivity function:

G (Jt) =

s
RJ2t

2h (g�1 (Jt))
: (26)

We must �rst establish that G (J) is strictly increasing, so that G (J) reaches its upper

bound when J does. G0 (J) > 0 is equivalent to 2h (g�1 (J)) > Jh0 (g�1 (J)) � @g�1 (J) =@J .

Since J = g (i), and thus @g�1 (J) =@J = 1=g0 (i), the previous inequality can be rearranged to

yield 2h (i) > g (i)h0 (i) =g0 (i). Now, using the fact that g (i) =2h (i) =
R i
0
 (x)�1 dx, we �nd

that G0 (J) > 0 is increasing if (and only if) g0 (i) > h0 (i)
R i
0
 (x)�1 dx, which is always true

since g0 (i) = 2h0 (i)
R i
0
 (x)�1 dx+ 2h (i)

R i
0
 (x)�1 dx:

The upper bound is the solution J� to J = �J +G (J) �̂ or, using (26) and rearranging, to

� (J) � 1� �J=J = �̂
p
R=2h (g�1 (J)) � � (J) ;

where we let J vary over
�
�J; g (1)

�
. � (:) is strictly increasing and �

�
�J
�
= 0, while � (:) is

strictly decreasing and �
�
�J
�
> 0. Thus, J� exists and is unique if � (g (1)) > � (g (1)), that is,

if g (1)� �J > �̂
q
Rg (1)2 =2h (1). From the de�nitions of g(:) and h(:), this gives:

2� (1)  (1)

Z 1

0

 (i)�1 di� �J > �̂

s
2R� (1)  (1)

�Z 1

0

 (i)�1 di

�2
: (27)

Jt is bounded below by J� = �J �G (J�) �̂: Since J� = �J +G (J�) �̂, the condition that J� > 0

is equivalent to 2 �J > J�. Now, since J� < g (1), choosing �J � g (1) =2 ensures that Jt never goes

below 0. Then, setting �J = g (1) =2 and �̂ = 1 in (27), we �nd that a su¢ cient condition for Jt

to stay within the required interval is  (1) � (1) > 2R.
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