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THE KALMAN FILTER IN FINANCE:
AN APPLICATION TO TERM STRUCTURE MODELS OF COMMODITY PRICES

AND A COMPARISON BETWEEN THE SIMPLE AND THE EXTENDED FILTERS

Delphine LAUTIER

CEREG1

ABSTRACT : A Kalman filter can be used for the estimation of a model’s parameters, when the
model relies on non observable data. In finance, this kind of problem arises for example with

term structure models of interest rates, term structure models of commodity prices, and with the

market portfolio in the capital asset pricing model. The Kalman filter is also an interesting
method when a large volume of information must be taken into account, because it is very fast.

Last but not least, when associated with an optimization procedure, the filter provides a mean to

obtain the model’s parameters. In a first section, this article exposes the basic principles of the
method, shows how we can use it to estimate a model’s parameters, and presents two Kalman

filters. The first one is the simple filter, which accepts only linear models. The second one, the

extended filter, allows working with non-linear models. The second section is devoted to the
application of the Kalman filter in finance. To explain how this method can be used in this field,

we apply it to a very famous term structure model of commodity prices, and we discuss

practical problems usually not mentioned in the literature, regarding the implementation of the
method. The third section presents and compares the performances obtained with the two filters.

KEY WORDS: Simple Kalman filter − Extended Kalman filter − State-space models − Non

observable data -−Term structure − Commodity prices − Futures prices

SECTION 1. THE KALMAN FILTER

This section first introduces the basic principles of the Kalman filter, and explains what

kind of problems this method can resolve. Then it presents the simple and the extended filters.

Finally, it explains how to estimate a model’s parameters.

1.1. A brief introduction to the Kalman filter

The basic principle of the Kalman filter is the use of temporal series of observable

variables to reconstitute the value of the non-observable variables. The method requires first of
all that the model is expressed on a state-space form. A state-space model is characterized by a
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measurement equation and a transition equation2. Once this has been made, a three step iteration

process can begin.
The kind of problem a Kalman filter can resolve is represented on the figure 1. The

filter is useful when the model relies on variables for which there are no empirical data. The

only available information for these variables α~  is the transition equation, which describes their
dynamic. This equation allows the calculation of α~  in t, conditionally to their value in (t-1).

Once this calculus has been made, it is possible to obtain, via the measurement equation, the

measure y~  in t. This second equation represents the relationship linking the observable
variables y~  with the non observable α~ . The difference, in t, between the measure y~  and the

empirical data y represents the innovation v. Finally, this innovation is used to obtain the value

of α~ at the date t, conditionally to the information available in t.
Figure 1. The basic principles of the Kalman filter

( )1/1/
~~

−− = tttt Zy α

Transition 

Measurement

   Estimated data   Empirical data

1/
~

−−= tttt yyv

( )11/
~~

−− = ttt T αα

State-space model 

∅→tα~

ttt yy →−1/
~

Kalman filter 

tα~

Thus the Kalman filter allows for the calculation of α~ , and updates its value when
some new information arrives. There is one iteration for each observation date t, and one

iteration includes three steps, as is shown in the figure 2.

During the first step, the prediction phase, the values of the non-observable variables in
(t-1) are used to compute their expected value in t, conditionally to the information available in

(t-1). The predictions rely on the transition equation. The predicted values 1/
~

−ttα  are then

introduced in the measurement equation to determine the measure ty~ . In this equation, the
errors have zero mean and are not serially nor temporarily correlated. They represent every kind

of disturbances likely to lead to errors in the data. The second step or innovation phase allows

for the calculation of the innovation vt. Lastly, the values of the non-observable variables, which

                                                
2 There is more than one state-space form for certain models. Then, because, some of them are more stable than the
others, the choice of one specific representation is important.
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where computed in the prediction phase, are updated conditionally to the information given by

vt. Once this calculus has been made, tα~  is used to begin a new iteration.
Figure 2. The three steps of an iteration
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This presentation gives rise to two remarks. The first is that to begin the iteration
process, in t = 1 for example, we need to have the value 0

~α . This kind of problem will be

tackled in the second section. The second remark is that now it is possible to understand why

the Kalman filter is a very fast method. Only two elements are actually used to reconstitute
temporal series for α~  : the transition equation, and the innovation v. Because there is an

updating at each iteration, the volume of information used is very low : just the new one is

necessary, the one that just arrived. And once the iteration goes further, there is no need to keep
it longer.

1.2. The simple Kalman filter3

The simple Kalman filter is the most frequently used version of the Kalman filter. It can
be employed when the measurement and transition equations are linear.

The state-space form model, in the simple filter, is characterized by the following

equations :

• Transition equation : tttt RcT ηαα ++= −− 11/

where αt is the vector of non observable variables in t, also called state vector, which is (m × 1),

T is a matrix (m × m), c is (m × 1), and R is (m × m)

• Measurement equation : ttttt dZy εα ++= −− 1/1/

where 1/ −tty  represents multivariate temporal series (N×1), Z is a (N×m) matrix, and d is a
(N×1) vector.

                                                
3 This presentation is inspired by Harvey (1989) and Roncally (1995).
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tη and tε are white noises, respectively (m×1) and (N×1). They are supposed to be normally
distributed, with zero mean and with Q and H as covariance matrices :

[ ] 0=tE η , [ ] QVar t =η

[ ] 0=tE ε , [ ] HVar t =ε

The initial position of the system is supposed to be normal, with mean and variance :
[ ] 00

~αα =E , [ ] 00 PVar =α

If tα~ is a non biased estimator of αt, conditionally to the information available in t,
then :

[ ] 0~ =− tttE αα

As a consequence, the following expression4 defines the covariance matrix Pt :
( )( )[ ]'~~

tttttt EP αααα −−=

During one iteration, three steps are successively tackled : prediction, innovation and

updating.
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where 1/
~

−tty  is the estimator of the observation yt conditionally to the information available in
(t-1), and vt is the innovation process, with Ft as a covariance matrix.

• Updating : 
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The matrices T, c, R, Z, d, Q, and H are not time dependent in the simplest cases that we

consider in this article. They are the system’s matrices associated with the state-space model.

1.3. The extended Kalman filter5

When the model is non-linear, it is generally impossible to obtain an optimal estimator

for the non observable variables. An other method, the extended Kaman filter, can be used.
However, it introduces an approximation in the estimation, because it leads to the linearization

of the model.

                                                
4 ( ) '~

tt αα − is the transposed matrix of ( )tt αα −~ .

   

5 This presentation is inspired by Harvey (1989) and Anderson and Moore (1979).
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In the non linear case, the measurement and transition equation of the state-space form

model are the following :
• Transition equation : ttttt RT ηααα )()( 111/ −−− +=

where αt/t-1  is the state vector in t, which is (m×1), and where )( 1−tT α  and )( 1−ttR α  are non

linear functions, depending on the values of the state variables in (t-1).

• Measurement equation : ttttt Zy εα += −− )( 1/1/

where 1/ −tty represents multivariate temporal series (N×1), and )( 1/ −ttZ α  is a non linear

function of the non observable variables.

As was the case in the simple Kalman filter, the two processes εt and ηt are supposed to

be normally distributed, with zero mean, and with H and Q as the covariance matrices :
[ ] 0=tE η , [ ] QVar t =η
[ ] 0=tE ε , [ ] HVar t =ε .

The system’s initial position is such as : [ ] 00
~αα =E  and [ ] 00 PVar =α . We suppose

that tα~  is a non biased estimator of αt, conditionally to the information available in t, and that
the following expression can be written : [ ] 0~ =− tttE αα . As a consequence, the following
relationship defines the covariance matrix Pt, associated with tα~  :

( )( )[ ]'~~
tttttt EP αααα −−= .
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In the extended version, the three steps of the iteration are the following :
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where 1/
~

−tty is the estimation of the observation yt, conditionally to the information available in

(t-1), and vt is the innovation process with Ft as a covariance matrix.

• Updating : ( )
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In the most simple case, the functions )( 1/ −ttZ α , )( 1−tT α , and )( 1−tR α , just as the
covariance matrices H and Q, are not time dependent. )( 1/ −ttZ α , )( 1−tT α  and )( 1−tR α  are the

system’s functions. H and Q are the system’s matrices.

1.4. The parameters estimation

Suppose now that the non-observable variables and the errors are normally distributed.

Then the Kalman filter can be used to estimate the model’s parameters, which are supposed to

be constants. On that purpose, we compute, at each iteration and for a given vector of
parameters, the logarithm of the likelihood function for the innovation vt :

tttt vFvdF
n

tl ××−−Π×




−= −1'

2
1

)ln(
2
1

)2ln(
2

)(log

where Ft is the covariance matrix associated with the innovation vt, and dFt its determinant6.

Relying on the hypothesis that the model’s measurement equation admits continuous

partial derivatives of first and second order on the parameters, an other recursive procedure is
employed to estimate the parameters. An initial (M×1) vector of parameters is first used to

compute all innovations of the study period and the logarithms of the likelihood function. Then

the iterative procedure makes a search for the parameter’s vector x that maximizes the
likelihood function f and minimizes the innovations. Once this optimal vector has been

obtained, the Kalman filter is used, for the last time, to reconstitute the non-observable variables

and the measure y~  associated with these optimal parameters.

SECTION 2. APPLYING THE KALMAN FILTER

To explain how the Kalman filter can be used in finance, the filter is applied to a very

famous term structure model of commodity prices, which was developed by Schwartz in 1997.

The way to employ a Kalman filter in the case of term structure models is first explained. The
Schwartz’s model is then presented, and we show how it can be transformed into a state-spaced

model for a simple filter and for an extended filter. Once this has been made, we explain how

the iteration process can be initiated, and how it can be stabilized.

2.1. The Kalman filter applied to term structure models

When the Kalman filter is applied to term structure models of commodity prices, the

aim is the estimation of the measurement equation’s parameters, in order to obtain estimated
                                                
   

6 The value of logl(t)  is corrected when dFt is equal to zero.
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futures prices for different maturities ( )iF τ~
, and to compare them with empirical futures prices

( )iF τ , as is shown in figure 3. The closest the firsts are with the seconds, the best is the model.
So the way we use the Kalman filter is not perfectly straightforward, because the reconstitution

of temporal series for non-observable data is not the most important objective, and because the

Kalman filter is always associated with an estimation method for the parameters. But there is
still a need for the values of the non-observable data to obtain the observable ones which, in that

case, are the futures prices for different maturities. And the Kalman filter is a very fast mean to

get them.

Figure 3. The Kalman filter applied to term structure models of commodity prices
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In the case of term structure models of commodity prices, the non observable data are,

most of the time, the spot price S and the convenience yield C. The later can be briefly defined
as the comfort associated with the possession of physical stocks. There are usually no empirical

data for these two variables, because there are most of the time no reliable time series for the

spot price, and the convenience yield is not a traded asset.
The estimation of term structure models is not straightforward, because the analysis relies

on two dimensions in time : the first dimension is the estimation period, between the 1st of

September, 2000 and the 15th of August, 2002 for example  ; the second dimension is
represented by the maturities of the futures contracts, for example the first, the third, the sixth

and the ninth months of delivery.

The measure of the model’s performances must take into account these two dimensions.
One way to appreciate these performances is to compute the difference between F

~
 and F  for

different maturities, at one specific observation date, as is illustrated in figure 4. Here is

appreciated the model’s ability, at one specific date, to represent the term structure of
commodity prices. In the example represented on the figure 4, the innovation for the shorter
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maturity τi is smaller than the innovation for the longer maturity τn and the estimated futures

prices, for all the maturity, present a positive bias : they are always superior than the empirical
data.

Figure 4. The estimation for different maturities at one specific date

F( t, T i )  = F(ττi )

Maturity

F(τ i )

τ i
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~

iF τ

τn

v(τ i )
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The second way to appreciate the model’s performances is to analyze the estimation’s

error for one specific maturity τi and for the whole estimation period, as is show in figure 5.

This time, the figure illustrates a negative bias in the estimation for the maturity τi : for each
date of the estimation sample, the estimated futures prices are always below the empirical data.

Figure 5. The estimation for one specific maturity
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(τ )
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2.2. Schwartz’s model

The Schwartz model (1997) is one of the most famous term structure models of

commodity prices. It presents three characteristics. First, its performances are good. Second, it
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has an analytical solution, which simplifies the application of the Kalman filter. Third, it allows

for the use of a simple filter.
The Schwartz’s model supposes that two states variables, namely the spot price S and

the convenience yield C, can explain the behavior of the futures prices F. The dynamic of these

state variables is the following :

( )[ ]



+−=
+−=

CC

SS

dzdtCkdC

SdzSdtCdS

σα

σµ  )(

with : [ ] dtdzdzE CS ρ=×
       κ, σS, σC >0

where : - µ is the immediate return expected for the spot price S,
- Sσ  is the spot price’s volatility,

- dzS is the increment of the Brownian motion associated with S,

- α is the long run mean of the convenience yield C,

- κ represents the convergence of the convenience yield towards α,

- Cσ  is the convenience yield’s volatility,

- dzC is the increment of the Brownian motion associated with C.
- ρ is the correlation between the two Brownian motions associated with S and C,

The model’s solution expresses the relationship at t between an observable futures price
F for a delivery in T, and the state variables. This solution is :
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where : - r is the risk free interest rate7,

- λ is the risk premium associated with the convenience yield,
- τ = T - t is the maturity of the futures contract.

To appreciate the model’s performances, there is first of all a need for the optimal

values of all the parameters (µ, Sσ , α, κ, Cσ , and ρ ). These optimal parameters will then be
employed to compute the estimated futures prices for different maturities, and to compare them

with empirical data.

2.3. Applying the simple filter to the Schwartz’s model

The simple filter is suited for linear models. To apply it, the solution of the Schwartz’s

model can be easily expressed on a linear form, as follows :

                                                
7 In that model, interest rates are supposed to be constant.
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Considering the relationship G = ln(S), we also have :
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Then, to employ a Kalman filter, the model must be expressed on its state-space form. A
state-space model is characterized by its transition and its measurement equation.

The transition equation is the expression, in discrete time, of the state variables dynamic.

Retaining the same notations as before, this equation is :
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 is a (2×1) vector, and ∆t is the period separating 2 observation dates
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is a (2 × 2) matrix,

- R is an identity matrix, (2 × 2),

- ηt are non correlated errors, with :

E[ηt] = 0,  and 
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The measurement equation is issued from the solution of the model :
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where :
- ( )( )[ ]itt Fy τ~

ln~
1/ =−  is the ith line of the 1/

~
−tty  vector for the estimated observable variables,

with i = 1,..,N. N is the number of maturities which where retained for the estimation.
- d = [B(τi)] is the ith line of the d vector, with i = 1,..., N
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κτ ie
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1
   ,1  is the ith line of the Z matrix, which is (N×2), with i = 1,...,N

- εt is a white noise’s vector, (N×1), with no serial correlation :

E[εt] = 0 and H = Var[εt]. H is (N × N)

2.4. Applying the extended filter to the Schwartz’s model

From a practical point of view, passing from the simple to the extended filter implies

that the system’s matrices Z, T and R are replaced with non linear functions, depending on the
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state variables. And to employ the extended Kalman filter, there is no need to express the

Schwartz’s solution on a linear form.
The transition equation is directly issued from the dynamic of the state variables. In

discrete time, keeping the same notations as before, this dynamic becomes :
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The measurement equation becomes :
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- εt is a white noise’s vector, (N×1), with no serial correlation:

E[εt] = 0 and H = Var[εt]. H is (N × N)

Lastly, the derivatives of the functions T  and R  conditionally to the state variables,

respectively T̂ and R̂ , are the following :

- T̂  is a (2×2) matrix : ( ) ( )
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The extended Kalman filter is based on the linearization of the function linking the

observable variables to the non-observable. Therefore, an approximation is made in this filter
which is absent of the simple one.

2.5. Practical difficulties associated with the empirical study

To perform the empirical study, some difficulties must be overcome. First, there are
choices to make when the iterative process is started. Second, if the model has been expressed in

logarithm for the simple Kalman filter, some precautions must be taken when the performances

are appreciated. Third the stability of the iteration process and the model’s performances are
extremely sensitive to the covariance matrix H.

2.5.1. Starting the iterative process

To start the iterative process, there is a need for the initial values of the non-observable
variables and for their covariance matrix. Indeed, to proceed with the iteration’s prediction step

at date 1, the values of the state variables and of the covariance matrix at date 0 must be known.

Because the states variables are non observable, an approximation must be chosen.
In the case of term structure models of commodity prices, the non-observable state

variables are most of the time, the spot price and the convenience yield. The nearest futures

price is generally retained as the spot price S, and the convenience yield C is computed with the
solution of a simple term structure model, more precisely the Brennan and Schwartz’s model

(1985). This solution requires the use of two observed futures prices, for delivery in T1 and in

T2 :
( ) ( )

21

21 ),,(ln),,(ln
TT

TtSFTtSF
rc

−
−

−=

where T1 is the nearest delivery, and T2 is just after.

The covariance matrix associated with the state variables must also be initialized. We

choose a diagonal matrix, with the spot price’s variance and the convenience yield’s variance on
the diagonal.

Once the approximation’s method has been chosen, we had to decide which value to

retain for the state variables and the covariance matrix. We choose the first value of the
estimation period for the non-observable variables, and we computed the variances with the first

30 data of the estimation period.

To start the iterative process for the optimization, there is also a need for the parameters
initial values. If the iteration process appears to be unstable, constraints can be added on the

parameters.
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2.5.2. Measuring the performances

When the solution of the model is expressed on its logarithmic form, some precautions
must be taken when the model’s performances are measured. Indeed in that case, the

innovations are computed with the logarithm of the futures prices. Therefore there is a difficulty

when the estimated and empirical data are rebuilt. The relationship linking the logarithm of the
estimations 1/

~
−tty  with the logarithm of the observation yt is actually the following :

Ryy ttt σ+= −1/
~

where σ is the standard error of the innovations and R is a gaussian residue. To be perfectly

correct, when the logarithm of the estimations is used to obtain the estimations themselves, the

relationship between yt  and 1/
~

−tty  becomes : Ryy eee ttt σ×= −1/
~

The expectation of the observation’s exponential is then8 :

[ ] [ ] 2
~

2

1/

σ

eeEeE ttt yy ×= −

When the simple Kalman filter is applied to a model like the Schwartz’s model, when

the estimated futures prices are compared with the empirical data, a corrective term should be

added to the estimations exponential. The trouble is, this correction is delicate, because the
innovations variance is modified as soon as the parameters change.

2.5.3. Stabilizing the iteration process

An other important choice must be made before initiating the Kalman’s iteration
process. This choice concerns the estimation of the covariance’s matrix associated with the

errors introduced in the measurement equation. This system’s matrix H is very important for the

iteration’s stability, because it is added, during the innovation phase, to the innovation
covariance’s matrix. In the simple Kalman filter, the relationship between the innovation’s

matrix Ft and the system’s matrix H is actually the following :
HZZPF ttt += − '1/

where Pt/t-1 is the covariance matrix associated with the non-observable variables tα~ , and Z is an

other system’s matrix, included in the measurement equation.
During the next phase of the iteration process, the inverse of the innovation’s matrix is

used for the updating of the non-observable variables and their covariance matrix :

( )





−=

+=

−
−

−

−
−−

1/
1

1/

1'
1/1/

ˆ'ˆ

ˆ~~

tttttttt

tttttttt

PZFZPIP

vFZPαα

Therefore, the updating of the non observable variable are strongly affected by the

matrix H. And if the terms of this matrix are too high, the iteration can become unstable.
Most of the time, the easiest way to estimate this matrix is to compute the variances and

the covariances of the estimation’s database. This method was retained to measure the model’s

performances presented in the paragraph 3.3. But it is important to know how much the

                                                
 �  

8 1/
~

−ttye and Reσ  are not correlated.
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empirical results are affected by this choice. To show it, some simulations are presented in the

paragraph 3.4.

SECTION 3. COMPARISON BETWEEN THE TWO FILTERS

The comparison between the performances of the Schwartz’s model measured with the

two filters allows appreciating the influence of the linearization on the results. In this section,

the empirical data are first of all presented. Then the performance criteria are exposed. Finally,
the results are delivered and commented.

3.1. The empirical data

The data used for the empirical study are daily crude oil prices for the settlement of the
Nymex’s WTI futures contracts, between the 25th of September, 1995, to the 14th of January,

2002. They have been arranged such as the first futures price’s maturity τ1 is actually the one

month’s maturity, and such as the second futures price’s corresponds to the two months
maturity τ2, ... Keeping the first observation of each group of five, this daily data were

transformed into weekly data. For the parameter estimation, and for the measure of the model’s

performances, four series of futures prices9 were retained, corresponding to the one, the three,
the six and the nine months maturities.

The interest rates are T-bill rates for a three months maturity. Because interest rates are

supposed to be constant in the model, we used the mean of all the observations between 1995
and 2002.

3.2. The performances criteria

To measure the model’s performances, two criteria were retained : the mean pricing
errors and the root mean squared errors.

The mean pricing errors (MPE) are defined in the following way :

( ) ( )( )∑
=

−=
N

n

nFnF
N

MPE
1

,,
~1 ττ

where N is the number of observations, ( )τ,~
nF  is the estimated futures price for maturity τ at

the date n, and ( )τ,nF  is the observed futures price. The mean pricing error is expressed in US
dollar. It measures the estimation’s bias for one given maturity. If the estimation is good, the

mean pricing error must be very close to zero.

Retaining the same notations, the root mean squared error (RMSE), expressed in US
dollar, is defined in the following way, for one given maturity τ :

                                                
9 This means that N = 4 in the case we study.
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( ) ( )( )∑
=

−=
N

n

nFnF
N

RMSE
1

2
,,

~1 ττ

The RMSE is an empirical variance. It measures the estimation stability. This second criteria is

considered as the most representative, because prices errors can offset themselves and the mean

pricing error can be low even if there are strong deviations.

3.3. The empirical results

The estimation period used to obtain the parameters are the following : from the 25th of

September, 1995, to the 11th of May, 1998 and from the 18th of May, 1998, to the 15th of
October, 2001. These period have different lengths (respectively 31,5 and 53 months) because

we wanted to measure the influence of the available information’s volume on the model’s

performances. First, the optimal parameters obtained with the two filters are compared. Then the
model’s ability to represent the prices curve and their dynamic is appreciated, on the learning

database and on an expanded one. Finally, the sensitivity of the results to the error covariance

matrix is presented.

3.3.1. Optimal parameters

The optimal parameters were estimated on two study periods with the simple and the

extended filters. Their values are not the same10, as is illustrated by the tables 1 and 2.

Table 1. Optimal parameters, 1995-199811

Simple filter Extended filter

Parameters Gradients Parameters Gradients

Pull back force : κ 1,969842 -0,000265 2,023929 0,000114

Trend : µ 0,142741 0,001629 0,192335 0,000083

Spot price’s volatility : σS 0,241347 0,000177 0,228553 0,000339

Long run mean : α 0,098906 0,001271 0,149024 0,001422

Convenience yield’s volatility : σC 0,400676 -0,001242 0,383852 0,000053

Correlation coefficient : ρ 0,967136 -0,000031 0,973072 -0,000001

Risk premium : λ 0,088951 -0,001609 0,185988 -0,000883

During this first period, the optimal parameters obtained with the extended filter are

most of the time higher than the ones associated with the simple filter. The principal differences
concern the risk premium λ (110%), and the convenience yield’s long run mean α (50%). This

                                                
   

10 In the whole empirical study, optimizations have been made with a precision of 1e-5 on the gradients.
 �  

11 For the two filters, and for the two periods, the parameters values retained to initiate the optimization are the
same. These values are the following : κ = 0,5 ; µ = 0,1 ; σS = 0,3 ; α = 0,1 ; σC = 0,4 ; ρ = 0,5 ; λ = 0,1.
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phenomenon does not reproduce itself during 1998-2001, as is shown in table 2 : in that case,

the differences between the two parameters series are lower, and the most important deviations
are on the convenience yield’s volatility σC (26%) and the spot price’s volatility σS (23%).

Table 2. Optimal parameters, 1998-2001

Simple filter Extended filter

Parameters Gradients Parameters Gradients

Pull back force : κ 1,59171 -0,003631 1,258133 0,000628

Trend : µ 0,379926 0,000497 0,352014 -0,001178

Spot price’s volatility : σS 0,263525 -0,000448 0,320235 -0,000338

Long run mean : α 0,252260 -0,012867 0,232547 0,004723

Convenience yield’s volatility : σC 0,237071 -0,000602 0,288427 -0,001070

Correlation coefficient : ρ 0,938487 -0,001533 0,969985 0,000008

Risk premium : λ 0,177159 0,009272 0,181955 -0,002426

The differences between the optimal parameters obtained with the two filters show, first

that the linearization has a significant influence12, and second, that the parameters are not the
same for different periods. In this study, the trend and the convenience yield’s long run mean

are significantly higher for the second period.

3.3.2. The model’s performances

There are two ways to measure a model’s performances. The first uses the mean pricing

error and the root mean squared errors to see how the model’s can duplicate the form of the term

structure of futures prices. The second refers to graphics to show how the model reproduces the
dynamic of the price curve.

• The ability to reproduce the form of the term structure of futures prices

The first important conclusion of the study is that the model is able to reproduce the
prices curve quite precisely, as in shown in the tables 3 and 4. For a nine-month maturity, the

mean pricing error is around USD 0,12 per barrel ! And the RMSE is quite low, especially for

the shorter period. The second conclusion is that if the RMSE is the relevant criteria, then the
simple filter is always more precise than the extended one. This is true for the two periods, for

all the maturities13. These measure also always decreases with maturity, which is consistent

with Schwartz’s results on others periods. Nevertheless, Schwartz has worked with longer

                                                
   

12 Nevertheless, the parameters have the same order size that the one Schwartz obtained in 1997 on the crude oil
market, on different periods.
   

13 The MPE and the RMSE presented here can not directly be compared with the one Schwartz proposed in 1997,
because this author has made the calculus with the logarithm of the futures prices.
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maturities, and shown that the root mean squared error increases again for deliveries after 15

months.

Table 3. The model’s performances with the simple and the extended filters, 1995-1998

Simple filter Extended filter

Maturity MPE RMSE MPE RMSE

1 month -0,063 1,2769 0,0775 1,3972

3 months 0,1064 1,1804 0,2145 1,3011

6 months 0,1453 1,0142 0,2235 1,0861

9 months 0,1419 0,8468 0,2029 0,8812

Average 0,0827 1,0796 0,1796 1,1664

Unit : USD/b.

The third conclusion is that the results obtained with the mean pricing errors are

consistent with the previous one. The errors are always lower for the simple filter. Nevertheless,
on the two periods, except for one maturity, the mean pricing errors have a general tendency to

increase with the maturity. From 1995 to 1998, and for the two filters, they present a low

positive bias, which turns into a negative one for the simple filter, during 1998-2001.

Table 4. The model’s performances with the simple and the extended filters, 1998-2001

Simple filter Extended filter

Maturity MPE RMSE MPE RMSE

1 month -0,060423 2,319730 0,09793 2,294503

3 months -0,107783 1,989428 0,057327 2,120727

6 months -0,054536 1,715223 0,109584 1,877654

9 months -0,007316 1,567467 0,141204 1,695222

Average -0,057514 1,897962 0,101511 1,997027

Unit : USD/b.

To be perfectly rigorous, the model’s performances associated with the simple Kalman

filter should be corrected when, as is the case here, the logarithm of the estimations is used to

obtain the estimations themselves (see 2.5.2.). The correction improves a little the
performances, as is shown in table 5 : the root mean squared errors and the mean pricing errors

diminish a bit for almost all the maturities.
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Table 5. The comparison between the model’s performances associated with the simple filter,

when there are or there are no corrections for the logarithm, 1998-2001

Simple filter Simple filter corrected

Maturity MPE RMSE MPE RMSE

1 month -0,060423 2,319730 0,065644 2,314178

3 months -0,107783 1,989428 0,006419 1,981453

6 months -0,054536 1,715223 0,026010 1,709931

9 months -0,007316 1,567467 0,061301 1,564854

Average -0,057514 1,897962 0,036637 1,892604

Unit : USD/b.

Finally, the innovation range diminishes with the futures contracts maturity, for the two

periods. The figure 6 illustrates the innovation behavior for the one-month’s maturity. It shows

that they tend to return to zero, for the two periods and for the two filters. This is a good result,
because this is what they are supposed to do in the Kalman filters. Nevertheless, as the figure

illustrates it, even if the mean pricing errors are low for the two filters, the pricing errors, at

certain specific dates, can be rather important. The maximum innovation in absolute value, for
the extended filter, is USD 3,44 during 1995-1998, which represents 17% of the mean futures

price for the one-month maturity. For the simple filter, it is USD 3,21 or 15;86% of the mean

futures price. For that period and for that maturity, the average of the innovations represents
0,4% of the mean futures price for a one-month maturity for the extended filter, and 0,31% for

the simple filter.

Figure 6. Innovations, 1998-2001
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The maximum innovation increases a lot during the second period. In absolute value,

during 1998-2001, it reaches USD 6 for the extended filter, which represents 25% of the mean
futures price for a one-month maturity. It is a bit lower for the simple filter : USD 5.

Therefore, as a conclusion, we can say that there is clearly an impact of the linearization

introduced in the extended filter : it can be shown on the optimal parameters, on the
performances, and on the innovations. Nevertheless, with an extended filter, the model’s ability

to represent the prices curve is still good.

• The ability to reproduce the dynamic of the term structure of futures prices

An other way to appreciate a model’s performances is to see if it is able to reproduce the

price’s dynamic. This can be shown graphically.

On that point of view, the first important conclusion is that the model is able to
reproduce the prices dynamic quite precisely, even if, like in 1998-2001, there are very large

fluctuations in the futures prices. The figure 7 shows the results obtained for the one-month’s

maturity. During that period, the crude oil prices goes from USD 11 per barrel to USD 37 per
barrel ! Even if the Kalman filters are often suspected to be unstable, these results show that

they can be used even with extremely volatile data. The graphic also shows that the two filters

attenuate the range of price fluctuations. This phenomenon can actually be observed for the two
study periods, for every maturities.

Figure 7. Estimated and observed futures prices for the one month maturity, 1998-2001
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The second important conclusion concerns the ability to reproduce the way price curves
evolve with time.

The figure 8 represents six term structures of crude oil prices, for different maturities
(one to nine months), observed weekly on the Nymex between the 9th of August and the 14th of
September, 1999. During this period, the price curves are always in backwardation, and they are
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characterized by the presence of a little bump. Moreover, the intensity of the bakwardation
increases and the curve goes higher, as the futures prices for all the maturities rise.

Figure 8. Observed term structures of crude oil prices
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The figure 9 shows how the model reproduced this evolution. It represents, for the same
observations dates, the term structure of crude oil prices which where estimated with a simple
Kalman filter. The model is able to replicate correctly not only the displacement towards the
heights, but also the slope’s intensification. Finally, despite it is theoretically able to do it, the
model doesn’t represent, in this example, the little bump in the curves that was empirically
observed

Figure 9. Estimated term structures of crude oil prices
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3.3.3. Expansion of the database

The parameter estimation shows, in 3.3.1, that they are not the same for different
periods. Hence two questions arise. Firstly, is it necessary to often recompute the parameters ?

Secondly, when does the calculus have to be done ?

To bring a precise answer to these questions, a sensibility’s analysis of the estimated
prices to the parameters should be undertaken. But measuring the model’s performances when

the database is expanded and the parameters are kept the same as before can make a first step in

the comprehension of what happens. This test has been made for two periods of three months,
located in the prolongation of the two estimation’s periods : from the 18th of May to the 17th of

August 1998 and from the 21st of October 2001 to the 14th of January, 2002.

One important conclusion issued from these tests is that the model’s performance
decrease strongly when the database is expanded. The root mean squared errors and the mean

pricing errors rise dramatically for the two periods. This phenomenon is particularly strong

when the futures prices are volatile, during 2001-2002, and it will probably be even more
pronounced as the database expansion’s length increase. Therefore there is a strong incentive to

recompute the optimal parameters each time the model is used. This is not especially an

important drawback, at least when there is an analytical solution for the model, because then the
estimation’s process is very fast.

The differences in the performances we observe with the two filters are inverted when

the optimal parameters of a given period are used to estimate futures prices on a period, which is
situated after the learning period. The model is then most of the time more precise with the

extended filter, and we observed this phenomenon for the two periods, as the tables 6 and 7

illustrate it.

Table 6. The model’s performances with an extrapolation on a three months period, in 1998

Simple filter Extended filter

Maturity MPE RMSE MPE RMSE

1 month 2,0138 2,2012 1,7392 1,8834

3 months 1,3296 1,3749 1,2448 1,3084

6 months 0,6512 0,755 0,7563 0,8691

9 months 0,2710 0,5442 0,4883 0,6540

Average 1,0664 1,2188 1,0572 1,1787

The results we obtain with an extrapolation on three months are nevertheless more in

the favor of the extended filter in 1995 than in 1998. In the first case, what ever the maturity is

considered, the mean pricing errors and the root mean squared errors are much lower with the
extended filter. For the second period, the extended filter’s advantage disappears when the

maturity reaches the sixth month, although, in average, it is still more precise.
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Table 7. The model’s performances with an extrapolation on a 3 months period, in 2001-2002

Simple filter Extended filter

Maturity MPE RMSE MPE RMSE

1 month -0,710678 3,371702 -3,243584 3,837790

3 months -0,379108 2,972144 -2,920091 3,408698

6 months 0,155104 2,500216 -2,247877 2,649836

9 months 0,385290 2,164323 -1,767425 2,123121

Average -0,137348 2,750296 -2,544744 3,004861

3.4. Simulations

The last results presented in this article are simulations. They show how the model’s
performances are affected by the choice of the system’s matrix H. This matrix represents the

errors in the measurement equation and the way it is estimated has a strong influence on the

empirical results.
Most of the time, the terms of this matrix corresponds to the variances and the

covariances of the estimation database, namely, in the case studied here, the variances and

covariance between futures prices for different maturities. But one must know that the results
obtained with the Kalman filter can be more precise if these terms are (artificially) lowered, as

is shown in table 8. This table exposes the different results obtained during 1998-2001 with the

extended Kalman filter. This period is especially interesting because the data fluctuate strongly
The performances are achieved, first with the matrix based on the observations, then with

artificially lowered matrices.

Table 8. Simulations with different system’s matrix H

Observations 1 month 3 months 6 months 9 months Average
MPE 0,0979 0,0573 0,1096 0,1412 0,1015

RMSE 2,2945 2,1207 1,8777 1,6952 1,9970

Simulation 1 1 month 3 months 6 months 9 months Average
MPE 0,0013 0,0935 0,1501 1,6506 0,4739

RMSE 1,8356 1,5405 1,2478 2,6602 1,8210

Simulation 2 1 month 3 months 6 months 9 months Average
MPE 0,0073 0,0152 0,0612 0,0137 0,0244

RMSE 1,4759 1,1686 0,9386 0,8317 1,1037

Simulation 3 1 month 3 months 6 months 9 months Average
MPE 0,0035 -0,0003 0,0383 0,0005 0,0105

RMSE 1,3812 1,0950 0,8647 0,7499 1,0227

Simulation 4 1 month 3 months 6 months 9 months Average
MPE 0,0131 0,0067 0,0415 0,0075 0,0172

RMSE 1,3602 1,0919 0,8697 0,7591 1,0202
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The simulations 1 to 4 correspond respectively to the model’s performances obtained by

multiplying the system’s matrix H by (1/2), (1/16), (1/160), and (1/1600). As the matrix is
lowered, the model’s performances improve strongly : from the initial performances to the

fourth simulation, the root mean squared error is almost divided by two. The comparison

between the third and the fourth simulation also illustrates the fact that there is a limit to the
performance amelioration. The figure 10 portrays the main results of these simulations.

Figure 10. One month’s futures prices observed/estimated, 1998 - 2001
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Estimated futures prices for a one month's maturity with a matrix H corresponding to the observations.
Estimated futures prices for a one month maturity and an artificially lowered matrix  (Simulation 4)

SECTION 4. CONCLUSION

The Kalman filters are powerful tools, which can be employed for model’s estimation in

many areas in finance. They are especially well suited for finance because they are fast even if
they have to deal with a large amount of information and because they allow for unobservable

variables. Moreover, they can be used for linear as well as non-linear models, even if there is no

analytical solution for the models.
The main conclusions of this article are the following. First, the extended Kalman filter

introduces an approximation, which is due to the model’s linearization. This approximation has

clearly an influence on the model’s performances: the extended filter leads generally to less
precise estimations than the simple one. Nevertheless, the difference between the two filters is

quite low and the extended filter is still acceptable. The second conclusion is that the estimation

results are sensible to the system’s matrix containing the errors of the measurement equation
and that this matrix can be used to obtain more precise results on the estimation base. The third

important conclusion is that at least for the term structure models of commodity prices, the

parameters are not constant in time and there is a need to recompute them very often. This can
become a problem if the model has no analytical solution, because of the computing time.
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Lastly, the approximation made in the extended Kalman filter is not a real problem until the

model becomes really non-linear. In that case, some other methods may be used, like the one
Küchner (1968) proposed. The study of this method, also well suited for non-linear models,

constitute the natural prolongation of this work.
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