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THE KALMAN FILTER IN FINANCE:
AN APPLICATION TO TERM STRUCTURE MODELS OF COMMODITY PRICES
AND A COMPARISON BETWEEN THE SIMPLE AND THE EXTENDED FILTERS

Delphine LAUTIER
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ABSTRACT : A Kaman filter can be used for the estimation of a model’s parameters, when the
model relies on non observable data. In finance, this kind of problem arises for example with
term structure models of interest rates, term structure models of commaodity prices, and with the
market portfolio in the capital asset pricing model. The Kaman filter is aso an interesting
method when a large volume of information must be taken into account, because it is very fast.
Last but not least, when associated with an optimization procedure, the filter provides a mean to
obtain the model’s parameters. In afirst section, this article exposes the basic principles of the
method, shows how we can use it to estimate a moddl’s parameters, and presents two Kaman
filters. The first one is the smple filter, which accepts only linear models. The second one, the
extended filter, allows working with non-linear models. The second section is devoted to the
application of the Kalman filter in finance. To explain how this method can be used in this field,
we apply it to a very famous term structure model of commodity prices, and we discuss
practical problems usualy not mentioned in the literature, regarding the implementation of the
method. The third section presents and compares the performances obtained with the two filters.

KEY wORDS: Simple Kaman filter - Extended Kaman filter - State-space models - Non
observable data -- Term structure - Commodity prices - Futures prices

SECTION 1. THE KALMAN FILTER

This section firgt introduces the basic principles of the Kalman filter, and explains what
kind of problems this method can resolve. Then it presents the smple and the extended filters.
Findly, it explains how to estimate a model’ s parameters.

1.1. A brief introduction to the Kalman filter

The basic principle of the Kalman filter is the use of tempora series of observable
variables to recongtitute the value of the non-observable variables. The method requires first of
al that the moddl is expressed on a state-space form. A state-space model is characterized by a

1pg phine.Lautier@ensmp.fr. | whish to tank Alain Galli for his advises, Totalfinaelf for the empirical data, and the
French Institute for Energy for its support.



06/12/02

measurement equation and a transition equation2. Once this has been made, a three step iteration
process can begin.

The kind of problem a Kalman filter can resolve is represented on the figure 1. The
filter is useful when the model relies on variables for which there are no empirical data. The
only available information for these variables a is the transition equation, which describes their
dynamic. This equation alows the calculation of a in t, conditionaly to their vaue in (t-1).
Once this calculus has been made, it is possible to obtain, via the measurement equation, the
measure y int. This second equation represents the relationship linking the observable
variables y with the non observable a . The difference, in t, between the measure y and the
empirical datay represents the innovation v. Findly, this innovation is used to obtain the value
of a at the date t, conditionally to the information available in t.

Figure 1. The basic principles of the Kalman filter

State-space model Estimated data‘ Empirical data

Transition
a1 =T (a~t—1)

Y

M easurement
Vi1 =2 (a tit-1

Kalman filter

a

Thus the Kalman filter allows for the calculation of a, and updates its value when
some new information arrives. There is one iteration for each observation date t, and one
iteration includes three steps, as is shown in the figure 2.

During the first step, the prediction phase, the values of the non-observable variables in
(t-1) are used to compute their expected value in t, conditionally to the information available in
(t-1). The predictions rely on the transition equation. The predicted values a,,, , are then
introduced in the measurement equation to determine the measure YV, . In this equation, the
errors have zero mean and are not serialy nor temporarily correlated. They represent every kind
of disturbances likely to lead to errors in the data. The second step or innovation phase alows
for the calculation of the innovation v;. Lastly, the values of the non-observable variables, which

2 There is more than one state-space form for certain models. Then, because, some of them are more stable than the
others, the choice of one specific representation isimportant.
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where computed in the prediction phase, are updated conditionaly to the information given by
V;. Once this calculus has been made, &, is used to begin anew iteration.
Figure 2. The three steps of an iteration

ITERATION 1: & | A
Prediction :
_ Transition - Measurement ~
a , —————» a iy —» Yt/t-1
Innovation:

Updating :

ITERATION2: &, Y

This presentation gives rise to two remarks. The firgt is that to begin the iteration
process, in t = 1 for example, we need to have the value a,. This kind of problem will be
tackled in the second section. The second remark is that now it is possible to understand why
the Kalman filter is a very fast method. Only two elements are actualy used to reconstitute
temporal series for a : the transition equation, and the innovation v. Because there is an
updating at each iteration, the volume of information used is very low : just the new one is
necessary, the one that just arrived. And once the iteration goes further, there is no need to keep
it longer.

1.2. The simple Kalman filter3

The simple Kalman filter is the most frequently used version of the Kalman filter. It can
be employed when the measurement and transition equations are linear.

The state-space form model, in the smple filter, is characterized by the following
equations :

- Transition equation : a,.,=Ta,,+c+Rh,

where a, is the vector of non observable variablesin t, also caled state vector, whichis(m”™ 1),
Tisamatrix (m” m), cis(m” 1),and Ris(m”~ m)

- Measurement equation : Yiroa =2y, td e

where y,,, , represents multivariate tempora series (N" 1), Z is a (N" m) matrix, and d is a
(N” 1) vector.

3 Thispresentation isinspired by Harvey (1989) and Roncally (1995).
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h and € are white noises, respectively (m' 1) and (N” 1). They are supposed to be normally
distributed, with zero mean and with Q and H as covariance matrices :
Elh]=0.varlh]=Q
E[q] =0, Var[q] =H
Theinitia position of the system is supposed to be normal, with mean and variance :
E[ao]: o, Var[ao] =K
If &,is anon biased estimator of a;, conditiondly to the information available in t,
then:
Et [at - é?t] =0
As a consequence, the following expression* defines the covariance matrix P :

R=Fk (a~t - at)(gt - at)']

During one iteration, three steps are successively tackled : prediction, innovation and
updating.

- i
- Prediction : i
1

where &, ; and Py, are the best estimators of ay.; and Py.,, conditionally to the information
availablein (t-1).

o 1
- Innovation : Vi =Y~ Yuea

where ¥, ,,_, isthe estimator of the observation y; conditionaly to the information available in
(t-1), and v, is the innovation process, with F; as a covariance matrix.

ja, =a,,.,* P, Z'F Y,
- Updating : } .
tR=( Pt/tlZF Z2)R1
Thematrices T, ¢, R, Z, d, Q, and H are not time dependent in the smplest cases that we

consder in this article. They are the system’ s matrices associated with the state-space model.

1.3. Theextended K alman filterd

When the model is non-linear, it is generally impossible to obtain an optima estimator
for the non observable variables. An other method, the extended Kaman filter, can be used.
However, it introduces an approximation in the estimation, because it leads to the linearization
of the moddl.

4 (@, - a,)isthetransposed matrix of (&, - a, ).
S This presentation isinspired by Harvey (1989) and Anderson and Moore (1979).
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In the non linear case, the measurement and transition equation of the state-space form
model arethe following :
- Transition equation : a,.,=T(@,,)*+*R@,.)h,
where ay.; is the state vector in t, which is (m' 1), and where T(a, ;) and R (a,,) are non
linear functions, depending on the values of the state variablesin (t-1).

- Measurement equation : Vi1 =Z@11) T €
where vy,,,_, represents multivariate temporal series (N" 1), and Z(a,,_,) iS a non linear
function of the non observable variables.

As was the case in the smple Kaman filter, the two processes e, and h, are supposed to

be normaly distributed, with zero mean, and with H and Q as the covariance matrices :
Elh]=0, varlh|=Q
E[et]: 0, Var[et]: H.

The system's initial position is such as: Efa,]=4&, and Var[a,|=P,. We suppose
that &, isanon biased estimator of a;, conditionaly to the information available in t, and that
the following expression can be written: E,[a, - &,]=0. As a consequence, the following
relationship defines the covariance matrix P, associated with &, :

Pt = Et[(at -at)(é_”t- at)']'

- Linearization :

If the functions Z(a,,,.,) et T(a,.,) are smooth enough, it is possible to compute their
limited development around respectively a,,, ,and &, ,, where &, , is the expectation of &,
conditionally to the information available in (t-1), and &,_, is the value obtained for the state
variablein (t-1), at the end of the updating phase. The state-space linearized modd is then :

}.at/t—l »Ta, + Ry,
T Yot » 281 tey
where : 2 =M ) TA =ML ) Ii: R(é:t-l) » R(a't-l)

da,,. -
tt-1 At /-17a¢t -1

In the extended version, the three steps of the iteration are the following :

}5t/t-1 =T(a:1A) o

tRi1=TR.T'+RQR

where &, ,and Py, are the estimators for ay., and Py, conditiondly to the information
avalablein (t-1).

- Prediction :

: Vi1 = 2@ 1.1)
- Innovation : ivi =Y~ W

i t .

TFt :ZtPf/t—lz[ +H
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where V,,, ,is the estimation of the observation y;, conditionally to the information available in
(t-1), and v, is the innovation process with F, as a covariance matrix.
}'éft =&t Pt/t—lZAtl Foiv,
iR=(- RZFZ)Rs

In the most simple case, the functions Z(@a,,. ,), T(a,,),ad R(@,,), just as the
covariance matricesH and Q, are not time dependent. Z(a,,,.,), T(a,.,) and R(@, ,) arethe
system’s functions. H and Q are the system’ s matrices.

- Updating :

1.4. The parameter s estimation

Suppose now that the non-observable variables and the errors are normally distributed.
Then the Kalman filter can be used to estimate the model’s parameters, which are supposed to
be constants. On that purpose, we compute, a each iteration and for a given vector of
parameters, the logarithm of the likelihood function for the innovation v :

loglt) =- &9 In(2p)- Lin(dF)- 2y, Fi7y,
e2g 2 2

where F, is the covariance matrix associated with the innovation v;, and dF, its determinant®.

Relying on the hypothess that the model’s measurement equation admits continuous
partial derivatives of first and second order on the parameters, an other recursive procedure is
employed to estimate the parameters. An initia (M” 1) vector of parameters is first used to
compute al innovations of the study period and the logarithms of the likelihood function. Then
the iterative procedure makes a search for the parameter’s vector x that maximizes the
likelihood function f and minimizes the innovations. Once this optimal vector has been
obtained, the Kalman filter is used, for the last time, to reconstitute the non-observable variables
and the measure y associated with these optimal parameters.

SECTION 2. APPLYING THE KALMAN FILTER

To explain how the Kaman filter can be used in finance, the filter is applied to a very
famous term structure model of commodity prices, which was developed by Schwartz in 1997.
The way to employ a Kaman filter in the case of term structure models is first explained. The
Schwartz's model is then presented, and we show how it can be transformed into a state-spaced
model for a simple filter and for an extended filter. Once this has been made, we explain how
the iteration process can be initiated, and how it can be stabilized.

2.1. TheKalman filter applied to term structure models

When the Kalman filter is applied to term structure models of commodity prices, the
am is the estimation of the measurement equation’s parameters, in order to obtain estimated

6 The value of logl(t) is corrected when dF; is equal to zero.
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futures prices for different maturities IE(t ), and to compare them with empirical futures prices
F(t,), asis shown in figure 3. The closest the firsts are with the seconds, the best is the model.
So the way we use the Kalman filter is not perfectly straightforward, because the recongtitution
of temporal series for non-observable data is not the most important objective, and because the
Kaman filter is always associated with an estimation method for the parameters. But there is
gtill aneed for the values of the non-observable data to obtain the observable ones which, in that
case, are the futures prices for different maturities. And the Kalman filter is a very fast mean to
get them.

Figure 3. The Kalman filter applied to term structure models of commodity prices

State-space model Estimated data Empirical data

Transition

Ay =T (é-t-l)

M easurement
Y1 =2 (at/t-l

Kalman filter

Optimisation

VE@E) = F(t)- F*(t,)

In the case of term structure models of commodity prices, the non observable data are,
most of the time, the spot price S and the convenience yield C. The later can be briefly defined
as the comfort associated with the possession of physical stocks. There are usualy no empirical
data for these two variables, because there are most of the time no reliable time series for the
spot price, and the convenience yield is not a traded asset.

The estimation of term structure models is not straightforward, because the analysis relies
on two dimensions in time : the first dimension is the estimation period, between the ' of
September, 2000 and the 15" of August, 2002 for example ; the second dimension is
represented by the maturities of the futures contracts, for example the first, the third, the sixth
and the ninth months of ddlivery.

The measure of the modd’s performances must take into account these two dimensions.
One way to appreciate these performances is to compute the difference between F and F for
different maturities, at one specific observation date, as is illustrated in figure 4. Here is
appreciated the modd’s ability, a one specific date, to represent the term structure of
commodity prices. In the example represented on the figure 4, the innovation for the shorter
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maturity t; is smaler than the innovation for the longer maturity t, and the estimated futures
prices, for al the maturity, present a positive bias : they are always superior than the empirical
data.

Figure 4. The estimation for different maturities at one specific date

F(t, T,)=F(t,)
A

Ft,)
F(t,)

t. t, Maturity

The second way to appreciate the model’s performances is to anayze the estimation’s
error for one specific maturity t; and for the whole estimation period, as is show in figure 5.
This time, the figure illustrates a negative bias in the estimation for the maturity t; : for each
date of the estimation sample, the estimated futures prices are aways below the empirical data.

Figure 5. The estimation for one specific maturity
F(Ot,T)=F(t)

A

Vi ()

t,:31/12/01 t,:09/01/02 Time

2.2. Schwartz's mode

The Schwartz model (1997) is one of the most famous term structure models of
commodity prices. It presents three characteristics. Fird, its performances are good. Second, it
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has an analytical solution, which simplifies the application of the Kalman filter. Third, it allows
for the use of asimple filter.

The Schwartz's model supposes that two states variables, namely the spot price S and
the convenienceyield C, can explain the behavior of the futures prices F. The dynamic of these
state variables is the following :

1dS=(m C)Sdt +s (Sdzg
rdc =[k(a - Cldt +s . dz,
with : E[dzS ’ dzC] =rdt
k,Sss Sc>0
where : - W istheimmediate return expected for the spot price S,

- S isthe spot price's volatility,

- dzs isthe increment of the Brownian motion associated with S,

- a isthelong run mean of the convenienceyield C,

- k represents the convergence of the convenience yield towards a,

- S isthe convenience yield' s volatility,

- dz: isthe increment of the Brownian motion associated with C.

- r isthe correlation between the two Brownian motions associated with Sand C,

The mode’ s solution expresses the relationship at t between an observable futures price
F for addivery in T, and the Sate variables. This solution is :

- kt

F(SCLT)=S(t)” expe C(t)l'f +B{ )
é a

2

1e2'“ueae ), - ekt gl

& SR

s¢ Ssscrt_it@+§_é
k5 j &4

with : B(t) %r at+t—s
-1 %)

where: - ristherisk free interest rate’,

- | istherisk premium associated with the convenience yield,

-t = T - tisthe maturity of the futures contract.

To appreciate the model’s performances, there is first of al a need for the optima
values of &l the parameters (U, S, a, k, S, and r ). These optima parameters will then be
employed to compute the estimated futures prices for different maturities, and to compare them
with empirical data.

2.3. Applying the ssmplefilter to the Schwartz's model

The simple filter is suited for linear models. To apply it, the solution of the Schwartz's
model can be easily expressed on alinear form, asfollows :

7 |n that model, interest rates are supposed to be constant.
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1- e®

In(F(S,C,t,T))=In(S(t))- C(t)” +B(t)

Considering the relationship G = In(S), we aso have :
:1 dG=(m- C- %s 2)dt+s dz

{dc=[kfa - C)ldt+sdz
Then, to employ a Kalman filter, the model must be expressed on its state-space form. A
state-space model is characterized by its transition and its measurement equation.
The transition equation is the expression, in discrete time, of the state variables dynamic.
Retaining the same notations as before, this equation is :

G 0 , &,_,U
atlg=c+T a2 tg+ R, t=1,...NT

&t/t—lg &t—lg
where :
e 1,00
- ngé’m ZSS;,DtE isa (2 1) vector, and Dt is the period separating 2 observation dates
g kabt
gl -Dty
- T=a qisa(2” 2) matrix,

&0 1- kDtf
Risan identity matrix, (2~ 2),
h; are non correlated errors, with :

é sipt rs.s.ptl
E[h] =0, ad Q=Var[h]=é& ~° S U
érSSSCDt SCDt 0

The measurement equation is issued from the solution of the modd :

- U
Yo =d+2Z° g%’”wq , t=1,..NT

t/t-lg
where :
Vo1 =In(Ft,)) isthe i line of the ¥,,, , vector for the estimated observable variables,
with i=1,..,N. N isthe number of maturities which where retained for the estimation.
- d=[B(,)] isthei"line of thed vector, withi=1,..., N
é 1-efa, o L
- Z= él , - 1 isthe ™ line of the Z matrix, which is(N"2), withi=1,..,.N
e u
- g lisawhitenoise'svector, (N 1), with no serial correlation :
E[e] =0andH = Var[g].His(N " N)

2.4. Applying the extended filter to the Schwartz's model

From a practical point of view, passing from the smple to the extended filter implies
that the system’s matrices Z, T and R are replaced with non linear functions, depending on the

10
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state variables. And to employ the extended Kaman filter, there is no need to express the
Schwartz' s solution on alinear form.

The transition equation is directly issued from the dynamic of the state variables. In
discrete time, keeping the same notations as before, this dynamic becomes :

AS/t 14=T(S.1,C.1) +R(S.1,Co ),

t/t-1
where :

- ‘S“ 1ulsthestatevector (2 1),

t/t- lg
e e o & ke G
- T ,C._,) isa(2 1) vector : T{S.,.C.., )=
(S-l 1-1) (21 (Stl tl) gk Dt+Q_1(1 th)a
= = .. . ~ ~ \ é5. ou
- R(§.,,G.y)isa(2 2) matrix : R(S-l’ct-l)zés Y
60 1j
é s rss U
- Qisa(2” 2) marix : Var(h)=a ~° Y
érSsSc Sc G

The measurement equation becomes :
Vit :Z(ilt-l’ét/t-l)-'-et
where :
Vi...=Flt,) isthei line of the ¥,,,, Vvector for the estimated observable variables, with
i=1,. ,N
- (S,t +Coe 1) isa(N" 2) matrix. Thei" line of this matrix is the following (i = 1,..,N) :

Z(S/t-rct/t-l):l_S/t-l, eXp(' H, Ct/t-l+B(ti))J

-kt

with : Hi:l e
Bti)= a+ C rg'th 1e +,”k+s r- séo iﬂ&-e'ktic‘_:luIJ
g T ST

a-1/k

- elisawhite noise’svector, (N" 1), with no serid correlation:
E[e] =0andH = Var[e].His(N " N)

Lastly, the derivatives of the functions T and R conditionaly to the state variables,
respectively T and Ii, are the following :

~ f~ _ e _ ~ _ ~ u
- T isa(2 2 matrix : T(st_l,c ):él+“Dt Ce..Dt SaD e
& 0 (1- kDt)g
- Z isa(2 N) matrix. Thei™ line of this matrix is the following, withi = 1,..N :
2(5_1,5”):[e(-HiCI.ﬁB(ti)) “H/’ e(—Hi(Et_yrB(ti))J
- kt
where 1 H, = 1-e

11
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e  s2 ss. g U &2 1-e*iu & s20, a- e gl
)= -a v g = ey T Ek s sar - 1
g O é u 7] 79|

The extended Kaman filter is based on the linearization of the function linking the
observable variables to the non-observable. Therefore, an approximation is made in this filter
which is absent of the smple one.

2.5. Practical difficulties associated with the empirical study

To perform the empirical study, some difficulties must be overcome. First, there are
choices to make when the iterative process is started. Second, if the model has been expressed in
logarithm for the ssimple Kaman filter, some precautions must be taken when the performances
are appreciated. Third the stability of the iteration process and the model’s performances are
extremely senditive to the covariance matrix H.

2.5.1. Sarting theiterative process

To start the iterative process, there is a need for the initia values of the non-observable
variables and for their covariance matrix. Indeed, to proceed with the iteration’s prediction step
at date 1, the values of the state variables and of the covariance matrix at date O must be known.
Because the dtates variables are non observable, an approximation must be chosen.

In the case of term structure models of commodity prices, the non-observable state
variables are most of the time, the spot price and the convenience yield. The nearest futures
priceis generaly retained as the spot price S, and the convenience yield C is computed with the
solution of a simple term structure model, more precisely the Brennan and Schwartz's model
(1985). This solution requires the use of two observed futures prices, for delivery in T, and in
T, :

CIn(F(s.t.1))- In(F(5.1,T,))
Tl B Tz
where T, isthe nearest delivery, and T, isjust after.
The covariance matrix associated with the state variables must also be initialized. We

choose a diagona matrix, with the spot price' s variance and the convenience yield’ s variance on
the diagonal.

Once the approximation’s method has been chosen, we had to decide which vaue to
retain for the state variables and the covariance matrix. We choose the first value of the
estimation period for the non-observable variables, and we computed the variances with the first
30 data of the estimation period.

To start the iterative process for the optimization, there is aso a need for the parameters
initial values. If the iteration process appears to be unstable, constraints can be added on the
parameters.

12
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2.5.2. Measuring the performances

When the solution of the modd is expressed on its logarithmic form, some precautions
must be taken when the mode’s performances are measured. Indeed in that case, the
innovations are computed with the logarithm of the futures prices. Therefore there is a difficulty
when the estimated and empirical data are rebuilt. The relationship linking the logarithm of the
estimations Y, ,,., with the logarithm of the observation v is actualy the following :

Ye = Y1 TSR
where s is the standard error of the innovations and R is a gaussian residue. To be perfectly
correct, when the logarithm of the estimations is used to obtain the estimations themselves, the
relationship between y; and V., becomes: e"t =g’ g
The expectation of the observation’'s exponential is then8 :

E[eyt ] = E[ey“‘-l]’ ez
When the simple Kalman filter is applied to a model like the Schwartz's model, when
the estimated futures prices are compared with the empirical data, a corrective term should be
added to the estimations exponentia. The trouble is, this correction is delicate, because the
innovations variance is modified as soon as the parameters change.

2.5.3. Sahilizing the iteration process

An other important choice must be made before initiating the Kalman's iteration
process. This choice concerns the estimation of the covariance's matrix associated with the
errors introduced in the measurement equation. This system’s matrix H is very important for the
iteration’s stability, because it is added, during the innovation phase, to the innovation
covariance’'s matrix. In the smple Kalman filter, the relationship between the innovation’s
matrix F, and the system’s matrix H is actualy the following :

R =2R,.£+H
where Py, is the covariance matrix associated with the non-observable variables &, , and Z is an
other system’s matrix, included in the measurement equation.

During the next phase of the iteration process, the inverse of the innovation’s matrix is
used for the updating of the non-observable variables and their covariance matrix :

}é-t =&yt R/t-lZF{ v,
iR =1 - RysZ FZ )R

Therefore, the updating of the non observable variable are strongly affected by the
matrix H. And if the terms of this matrix are too high, the iteration can become unstable.

Most of the time, the easiest way to estimate this matrix isto compute the variances and
the covariances of the estimation’s database. This method was retained to measure the model’s
performances presented in the paragraph 3.3. But it is important to know how much the

8 @¥t1 gnd @R are not correlated.

13
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empirical results are affected by this choice. To show it, some simulations are presented in the
paragraph 3.4.

SECTION 3. COMPARISON BETWEEN THE TWO FILTERS

The comparison between the performances of the Schwartz's model measured with the
two filters alows appreciating the influence of the linearization on the results. In this section,
the empirica data are first of al presented. Then the performance criteria are exposed. Finaly,
the results are ddlivered and commented.

3.1. Theempirical data

The data used for the empirical study are daily crude oil prices for the settlement of the
Nymex's WTI futures contracts, between the 25™ of September, 1995, to the 14™ of January,
2002. They have been arranged such as the first futures price’s maturity t; is actually the one
month’s maturity, and such as the second futures price's corresponds to the two months
maturity t,, ... Keeping the first observation of each group of five, this daily data were
transformed into weekly data. For the parameter estimation, and for the measure of the model’s
performances, four series of futures prices were retained, corresponding to the one, the three,
the six and the nine months maturities.

The interest rates are T-bill rates for a three months maturity. Because interest rates are
supposed to be constant in the model, we used the mean of al the observations between 1995
and 2002.

3.2. Theperformancescriteria

To measure the model’s performances, two criteria were retained : the mean pricing
errors and the root mean squared errors.
The mean pricing errors (MPE) are defined in the following way :
MPE=%§ (F(nt)- F(nt))

n=1
where N is the number of observations, IE(n,t ) is the estimated futures price for maturity t at
the date n, and F(n,t ) is the observed futures price. The mean pricing error is expressed in US
dollar. It measures the estimation’s bias for one given maturity. If the estimation is good, the
mean pricing error must be very close to zero.
Retaining the same notations, the root mean squared error (RMSE), expressed in US
dollar, is defined in the following way, for one given maturity t :

9 Thismeans that N =4 in the case we study.

14
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RMSE:\/ﬁéN (F(nt)- F(nt)f

n=1
The RMSE is an empirica variance. It measures the estimation stability. This second criteriais
considered as the most representative, because prices errors can offset themselves and the mean
pricing error can be low even if there are strong deviations.

3.3. Theempirical results

The estimation period used to obtain the parameters are the following : from the 25" of
September, 1995, to the 11™ of May, 1998 and from the 18" of May, 1998, to the 15" of
October, 2001. These period have different lengths (respectively 31,5 and 53 months) because
we wanted to measure the influence of the available information’s volume on the model’s
performances. Firgt, the optima parameters obtained with the two filters are compared. Then the
model’s ability to represent the prices curve and their dynamic is appreciated, on the learning
database and on an expanded one. Finaly, the sensitivity of the results to the error covariance
matrix is presented.

3.3.1. Optimal parameters

The optimal parameters were estimated on two study periods with the smple and the
extended filters. Their values are not the samel9, asisillustrated by the tables 1 and 2.

Table 1. Optimal parameters, 1995-199811

Simplefilter Extended filter

Parameters| Gradients | Parameters | Gradients
Pull back force: k 1,969842 | -0,000265 | 2,023929 | 0,000114
Trend: p 0,142741 | 0,001629 | 0,192335 | 0,000083
Spot price’svolatility : ss 0,241347 | 0,000177 | 0,228553 | 0,000339
Long run mean: a 0,098906 | 0,001271 | 0,149024 | 0,001422
Convenience yield' s volatility : sc| 0,400676 | -0,001242 | 0,383852 | 0,000053
Correlation coefficient : r 0,967136 | -0,000031 | 0973072 | -0,000001
Risk premium: | 0,088951 | -0,001609 | 0,185988 | -0,000883

During this first period, the optimal parameters obtained with the extended filter are
most of the time higher than the ones associated with the simple filter. The principal differences
concern therisk premium | (110%), and the convenience yield's long run mean a (50%). This

10n the whole empirical study, optimizations have been made with a precision of 1°-5 on the gradients.

11 For the two filters, and for the two periods, the parameters values retained to initiate the optimization are the
same. These values are thefollowing: k =0,5;u=0,1;ss=0,3;a=0,1;sc=04;r =05;1 =0,1.
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phenomenon does not reproduce itself during 1998-2001, as is shown in table 2: in that case,
the differences between the two parameters series are lower, and the most important deviations
are on the convenience yield' svoldtility sc (26%) and the spot price s volatility ss (23%).

Table 2. Optimal parameters, 1998-2001

Simplefilter Extended filter

Parameters| Gradients | Parameters| Gradients
Pull back force : k 159171 | -0,003631 | 1,258133 | 0,000628
Trend: p 0,379926 | 0,000497 | 0,352014 | -0,001178
Spot price’ s volatility : ss 0,263525 | -0,000448 | 0,320235 | -0,000338
Long runmean: a 0,252260 | -0,012867 | 0,232547 | 0,004723
Convenience yield svolatility : s¢| 0,237071 | -0,000602 | 0,288427 | -0,001070
Correlation coefficient : r 0,938487 | -0,001533 | 0,969985 | 0,000008
Risk premium: | 0,177159 | 0,009272 | 0,181955 | -0,002426

The differences between the optimal parameters obtained with the two filters show, first
that the linearization has a significant influencel2, and second, that the parameters are not the
same for different periods. In this study, the trend and the convenience yield's long run mean
are significantly higher for the second period.

3.3.2. The model’ s performances

There are two ways to measure a model’ s performances. The first uses the mean pricing
error and the root mean squared errors to see how the model’ s can duplicate the form of the term
structure of futures prices. The second refers to graphics to show how the model reproduces the
dynamic of the price curve.

- The ability to reproduce the form of the term structure of futures prices

The first important conclusion of the study is that the model is able to reproduce the
prices curve quite precisaly, as in shown in the tables 3 and 4. For a nine-month maturity, the
mean pricing error is around USD 0,12 per barrel ! And the RMSE is quite low, especidly for
the shorter period. The second conclusion is that if the RMSE is the relevant criteria, then the
smple filter is aways more precise than the extended one. This is true for the two periods, for
al the maturities!3. These measure aso aways decreases with maturity, which is consistent
with Schwartz's results on others periods. Nevertheless, Schwartz has worked with longer

12 Nevertheless, the parameters have the same order size that the one Schwartz obtained in 1997 on the crude oil
market, on different periods.

13 The MPE and the RMSE presented here can not directly be compared with the one Schwartz proposed in 1997,
because this author has made the cal culus with the logarithm of the futures prices.
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maturities, and shown that the root mean squared error increases again for deliveries after 15

months.

Table 3. The model’ s performances with the smple and the extended filters, 1995-1998

Simplefilter Extended filter
Maturity M PE RMSE M PE RMSE
1 month -0,063 1,2769 0,0775 1,3972
3 months 0,1064 1,1804 0,2145 1,3011
6 months 0,1453 1,0142 0,2235 1,0861
9 months 0,1419 0,8468 0,2029 0,8812
Average 0,0827 1,0796 0,1796 1,1664
Unit : USD/b.

The third conclusion is that the results obtained with the mean pricing errors are

consistent with the previous one. The errors are always lower for the smple filter. Nevertheless,
on the two periods, except for one maturity, the mean pricing errors have a genera tendency to
increase with the maturity. From 1995 to 1998, and for the two filters, they present a low

positive bias, which turns into a negative one for the smple filter, during 1998-2001.

Table 4. The model’ s performances with the smple and the extended filters, 1998-2001

Simplefilter Extended filter
Maturity MPE RMSE M PE RMSE
1 month -0,060423 | 2,319730 0,09793 2,294503
3 months -0,107783 | 1,989428 | 0,057327 2,120727
6 months -0,054536 | 1,715223 | 0,109584 1,877654
9 months -0,007316 1,567467 0,141204 1,695222
Average -0,057514 | 1,897962 | 0,101511 1,997027
Unit : USD/b.

To be perfectly rigorous, the model’s performances associated with the smple Kalman
filter should be corrected when, as is the case here, the logarithm of the estimations is used to
obtain the estimations themselves (see 2.5.2.). The correction improves a little the
performances, as is shown in table 5 : the root mean squared errors and the mean pricing errors

diminish a bit for almost all the maturities.
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Table 5. The comparison between the model’ s performances associated with the smple filter,
when there are or there are no correctionsfor the logarithm, 1998-2001

Simplefilter Simple filter corrected
Maturity M PE RMSE M PE RMSE
1 month -0,060423 | 2319730 | 0,065644 | 2,314178
3 months -0,107783 1,989428 0,006419 1,981453
6 months -0,054536 1,715223 0,026010 1,709931
9 months -0,007316 1567467 0,061301 1,564854
Average -0,057514 | 1,897962 | 0,036637 1,892604

Unit : USD/b.

Finally, the innovation range diminishes with the futures contracts maturity, for the two
periods. The figure 6 illustrates the innovation behavior for the one-month’s maturity. It shows
that they tend to return to zero, for the two periods and for the two filters. This is a good result,
because this is what they are supposed to do in the Kalman filters. Nevertheless, as the figure
illustrates it, even if the mean pricing errors are low for the two filters, the pricing errors, at
certain specific dates, can be rather important. The maximum innovation in absolute value, for
the extended filter, is USD 3,44 during 1995-1998, which represents 17% of the mean futures
price for the one-month maturity. For the smple filter, it is USD 3,21 or 15;86% of the mean
futures price. For that period and for that maturity, the average of the innovations represents
0,4% of the mean futures price for a one-month maturity for the extended filter, and 0,31% for

the simplefilter.

Figure 6. Innovations, 1998-2001
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The maximum innovation increases a lot during the second period. In absolute value,
during 1998-2001, it reaches USD 6 for the extended filter, which represents 25% of the mean
futures price for a one-month maturity. It is a bit lower for the simple filter : USD 5.

Therefore, as a conclusion, we can say that there is clearly an impact of the linearization
introduced in the extended filter: it can be shown on the optima parameters, on the
performances, and on the innovations. Nevertheless, with an extended filter, the modd’s ability
to represent the prices curveis still good.

- The ability to reproduce the dynamic of the term structure of futures prices

An other way to appreciate amodel’ s performancesis to seeif it is able to reproduce the
price’s dynamic. This can be shown graphicaly.

On that point of view, the first important conclusion is that the modd is able to
reproduce the prices dynamic quite precisely, even if, like in 1998-2001, there are very large
fluctuations in the futures prices. The figure 7 shows the results obtained for the one-month’s
maturity. During that period, the crude oil prices goes from USD 11 per barrel to USD 37 per
barrel ! Even if the Kaman filters are often suspected to be unstable, these results show that
they can be used even with extremely volatile data. The graphic also shows that the two filters
attenuate the range of price fluctuations. This phenomenon can actually be observed for the two
study periods, for every maturities.

Figure 7. Estimated and observed futures prices for the one month maturity, 1998-2001
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The second important conclusion concerns the ability to reproduce the way price curves
evolve with time.

The figure 8 represents six term structures of crude oil prices, for different maturities
(one to nine months), observed weekly on the Nymex between the 9" of August and the 14" of
September, 1999. During this period, the price curves are aways in backwardation, and they are
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characterized by the presence of a little bump. Moreover, the intensity of the bakwardation
increases and the curve goes higher, as the futures prices for al the maturitiesrise.
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Figure 8. Observed term structures of crude ail prices
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The figure 9 shows how the model reproduced this evolution. It represents, for the same
observations dates, the term structure of crude oil prices which where estimated with a smple
Kaman filter. The modd is able to replicate correctly not only the displacement towards the
heights, but aso the dope's intensification. Finally, despite it is theoretically able to do it, the
model doesn't represent, in this example, the little bump in the curves that was empiricaly

observed
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3.3.3. Expansion of the database

The parameter estimation shows, in 3.3.1, that they are not the same for different
periods. Hence two questions arise. Firdtly, is it necessary to often recompute the parameters?
Secondly, when does the caculus have to be done ?

To bring a precise answer to these questions, a senshbility’s analysis of the estimated
prices to the parameters should be undertaken. But measuring the model’s performances when
the database is expanded and the parameters are kept the same as before can make afirst step in
the comprehension of what happens. This test has been made for two periods of three months,
located in the prolongation of the two estimation’s periods : from the 18" of May to the 17" of
August 1998 and from the 21% of October 2001 to the 14™ of January, 2002.

One important conclusion issued from these tests is that the modd’s performance
decrease strongly when the database is expanded. The root mean squared errors and the mean
pricing errors rise dramatically for the two periods. This phenomenon is particularly strong
when the futures prices are volatile, during 2001-2002, and it will probably be even more
pronounced as the database expansion’s length increase. Therefore there is a strong incentive to
recompute the optima parameters each time the mode is used. This is not especialy an
important drawback, at least when there is an analytical solution for the model, because then the
estimation’s processis very fast.

The differences in the performances we observe with the two filters are inverted when
the optima parameters of a given period are used to estimate futures prices on a period, which is
Situated after the learning period. The model is then most of the time more precise with the
extended filter, and we observed this phenomenon for the two periods, as the tables 6 and 7
illustrate it.

Table 6. The model’ s performances with an extrapolation on a three months period, in 1998

Simplefilter Extended filter
Maturity M PE RMSE M PE RMSE
1 month 2,0138 2,2012 1,7392 1,8834
3 months 1,3296 1,3749 1,2448 1,3084
6 months 0,6512 0,755 0,7563 0,8691
9 months 0,2710 0,5442 0,4883 0,6540
Average 1,0664 1,2188 1,0572 1,1787

The results we obtain with an extrapolation on three months are nevertheless more in
the favor of the extended filter in 1995 than in 1998. In the first case, what ever the maturity is
considered, the mean pricing errors and the root mean squared errors are much lower with the
extended filter. For the second period, the extended filter's advantage disappears when the
maturity reaches the sixth month, although, in average, it is still more precise.
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Table 7. The model’ s performances with an extrapolation on a 3 months period, in 2001-2002
Simplefilter Extended filter
Maturity M PE RMSE M PE RMSE
1 month -0,710678 | 37371702 | -3,243584 | 3,837790
3 months -0,379108 2972144 | -2,920091 3,408698
6 months 0,155104 2,500216 | -2,247877 2,649836
9 months 0,385290 2,164323 | -1,767425 2123121
Average -0,137348 | 2,750296 | -2,544744 | 3,004861

3.4. Smulations

The last results presented in this article are smulations. They show how the model’s
performances are affected by the choice of the system’s matrix H. This matrix represents the
errors in the measurement equation and the way it is estimated has a strong influence on the
empirical results.

Most of the time, the terms of this matrix corresponds to the variances and the
covariances of the estimation database, namely, in the case studied here, the variances and
covariance between futures prices for different maturities. But one must know that the results
obtained with the Kalman filter can be more precise if these terms are (artificially) lowered, as
is shown in table 8. This table exposes the different results obtained during 1998-2001 with the
extended Kalman filter. This period is especially interesting because the data fluctuate strongly
The performances are achieved, first with the matrix based on the observations, then with
artificially lowered matrices.

Table 8. Simulationswith different system’smatrix H

Observations| 1 month 3 months 6 months 9 months Average
M PE 0,0979 0,0573 0,1096 0,1412 0,1015
RM SE 2,2945 2,1207 1,8777 1,6952 1,9970
Simulation 1 1 month 3 months 6 months 9 months Average
M PE 0,0013 0,0935 0,1501 1,6506 0,4739
RM SE 1,8356 1,5405 1,2478 2,6602 1,8210

Simulation 2 1 month 3 months 6 months 9 months Average

M PE 0,0073 0,0152 0,0612 0,0137 0,0244
RM SE 14759 1,1686 0,9386 0,8317 1,1037
Simulation 3 1 month 3 months 6 months 9 months Average
M PE 0,0035 -0,0003 0,0383 0,0005 0,0105
RM SE 1,3812 1,0950 0,8647 0,7499 1,0227
Simulation 4 1 month 3 months 6 months 9 months Average
M PE 0,0131 0,0067 0,0415 0,0075 0,0172
RM SE 1,3602 1,0919 0,8697 0,7591 1,0202
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The smulations 1 to 4 correspond respectively to the model’ s performances obtained by
multiplying the system’s matrix H by (1/2), (1/16), (1/160), and (1/1600). As the matrix is
lowered, the model’s performances improve strongly : from the initial performances to the
fourth simulation, the root mean squared error is amost divided by two. The comparison
between the third and the fourth smulation also illustrates the fact that there is a limit to the
performance amelioration. The figure 10 portrays the main results of these simulations.

Figure 10. One month’s futures prices observed/estimated, 1998 - 2001
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SECTION 4. CONCLUSION

The Kaman filters are powerful tools, which can be employed for modd’s estimation in
many areas in finance. They are especialy well suited for finance because they are fast even if
they have to dea with a large amount of information and because they alow for unobservable
variables. Moreover, they can be used for linear as well as non-linear models, even if thereis no
analytical solution for the models.

The main conclusions of this article are the following. First, the extended Kalman filter
introduces an approximation, which is due to the modd’s linearization. This approximation has
clearly an influence on the modd’s performances: the extended filter leads generaly to less
precise estimations than the smple one. Nevertheless, the difference between the two filters is
quite low and the extended filter is still acceptable. The second conclusion is that the estimation
results are sensible to the system’s matrix containing the errors of the measurement equation
and that this matrix can be used to obtain more precise results on the estimation base. The third
important conclusion is that at least for the term structure models of commodity prices, the
parameters are not constant in time and there is a need to recompute them very often. This can
become a problem if the model has no analytica solution, because of the computing time.
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Lastly, the approximation made in the extended Kalman filter is not a real problem until the
model becomes really non-linear. In that case, some other methods may be used, like the one
Kuchner (1968) proposed. The study of this method, also well suited for non-linear models,
congtitute the natural prolongation of this work.
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