Making Risk Management Systems Smart

Dr Jean-Noél DORDAIN, jnd@clipper.ens.fr
Niladri SINGH, singh@clipper.ens.fr

Cahier du CEREG 200002

Abstract

This paper introduces concepts used to rigorously model financial
transaction processes within a front to back office integrated risk man-
agement system. This unified modelling offers a framework particu-
larly well adapted to the optimisation of the computation of financial
product quantitative parameters. Furthermore, it allows to keep track
of the various computations performed.

Abstract

Cet article développe de nouveaux concepts qui permettent de
modéliser de facon rigoureuse I'intégration front / back office des trans-
actions financieres au sein d’un logiciel de gestion du risque. Cette
modélisation offre un cadre particulierement bien adapté "optimisation
et a la tracabilité des calculs de parametres quantitatifs définissant les
produits financiers.

Introduction

This paper deals with the efficient design of front to back office integrated
risk management systems. Having practised a number of risk management
systems, the authors have experienced the necessity of furnishing the finan-
cial processes constitutive of the trading and risk management tasks with
a detailed structure amenable to a rigorous modelling and implementation
treatment.

Data descriptions of financial products are complex and, within a given port-
folio, the data describing two financial products may be interlaced in a very
intricate way. Furthermore, financial portfolios usually contain very large
amounts of data by common standards. Hence, to address the issues en-
countered in quantitative finance, one needs much more than the simple
combination of a database manager and of a pricing functions library inter-
faced through their respective APIs. Therefore, a risk management system
cannot be reduced to its financial products pricing and data management
functions.

One must necessarily consider abstract objects when assessing quantitative
parameters of financial objects. By abstract objects, we mean intermediate
computational data that are neither inputs nor outputs of a risk management
system. An example is given by the Hull & White interest rates framework,
where the volatility input is the implied Black & Scholes volatility term struc-
ture computed from cap & floor market prices but the true computational
volatility is the gaussian equivalent term structure. Another example of the
pervasive nature of abstract data in financial computations is given by the
need, when performing a very large number of operations, to extract patterns
from the portfolio that make optimisation possible with respect to a given
set of criteria.

The aim of our approach is to furnish the pricing routines scheme and the fi-
nancial products management scheme with a unified algebraic structure. This
additional level of structuring makes it possible to integrate a new applicative
entity dedicated to operations on the algebraic layer. This new applicative
entity permits both total automatisation and fully optimised management of
the financial processes from front to back office.

The present paper is structured as follows.

o In Part 1, we give a detailed analysis of the usual pitfalls of risk manage-
ment systems. This analysis leads us to formulate basic requirements that a

risk management system must meet.

o In Part 2, we give an exhaustive description of the algebraic structure above
mentioned. The building blocks of this structure are: the financial types
system, the attributes framework, the relation framework and the pricing
models. We then show how these elements can be combined to yield product
graphs: algebraic representations of real financial portfolios.

o In Part 3, we show how this algebraic framework can be used to build al-
gorithms performing efficient financial computations. Among the important
features of our algorithms we shall specifically concentrate on the following:
avoiding useless computations, avoiding redundant computations and per-
forming computations optimised with respect to a given set of criteria.

¢ In the conclusion, we turn our attention to parallel computing and we show
that our algorithms permit straightforward parallelisation of the computa-
tion processes.

1 Risk management systems

1.1 Common pitfalls of risk management systems

The two most common pitfalls of risk management system implementations
appear to be:

o the system is an heterogeneous collection of independent software — where
each application is focused on a single area of expertise within the bank busi-
ness. The major drawback of this approach is that when two applications
with different views of the business need to communicate, the interface layer
that has to be built must incorporate not only a translation module but also
a computation module.

Consider for instance a front-office dedicated pricing system and a risk con-
trolling VaR oriented system. The historical volatility used for front office
pricing is expressed on a daily to monthly basis whereas the volatility used
for risk controlling is expressed on a monthly to annual basis. Thus, a front-
office / risk-control interface layer is a full fledged application able to compute
volatilities on various time bases. As shown in figure 1 this interface layer
is actually the juxtaposition of an application and two interface layers.

[2In31]

1aKe] QoRTIAUI
asodwo)

e One of the risk management applications is much larger than the others
and the design of this central application commands and limits that of all
the other applications. Usually, such a situation arises when a bank
out-sources its front office system and buys an integrated risk management
solution. For historical reasons, many off-the-shelf risk management
systems deal exclusively either with basic financial products — plain vanilla
and other simple options that are standardised and massively traded — or
structured OTC financial products — with low traded volumes and
sophisticated pricing methods. Off-the-shelf systems that have been
designed to answer needs arising from the trading of basic financial
products are data focused whereas systems that have been designed to
answer needs arising from the trading of structured financial products are
computation focused. Hence, either data are well processed but pricing
methods are rudimentary or pricing methods are well suited to all kinds of
products traded but the data treatment is primitive.

1.2 Risk management requirements

A truly integrated and adaptable system must satisfy the following
requirements:

o all the bank’s know-how is optimally used, each skill being integrated
with respect to its particular field of competence,

o the system is complete, the same data are coherently used throughout the
bank — feed, update, computation and historization —,

e the system is clearly subdivided into mission focused elementary blocks,
e whenever a functionality must be added, the various blocks can be
upgraded easily and independently, the development process that is
required can be clearly identified and its price can be predicted to a
satisfactory level of accuracy.

At a department level, banks are usually structured as follows:

e the front-office,
e the research — financial analysts and quantitative analysts —,

e the middle-office,
e the back-office.

The area of expertise of the various departments are:

e to build, to structure and to manage a portfolio is the front-office
business,

e for a given financial product, to define the features and the risk factors
relevant to pricing and general risk management is the business of financial
analysts within the research department,

o to design and to implement the various evaluation algorithms is the role
of quantitative analysts,

e to manage and to control the data feed is one of the middle-office tasks,

e to precisely define the standard features of global financial products is the
back-office role.

A global risk management system must incorporate all the value that is
created by the various departments of the bank and provide a global
representation of the bank’s traded assets in order to permit the evaluation
of their prices and of their risk parameters, local and global.

Hence, the architecture of a global risk management system can be
unbundled into elementary blocks — competence-wise and function-wise — as
represented in figure 2.

1.3 Risk management abstraction blocks

In figure 2, we have represented the dependencies — temporal and
structural — between the various blocks of a risk management system that
would meet the requirements that we have already formulated. Namely:

e the Financial product types block parallels the standardisation of
financial products operated by the back-office,

e the Types to attributes block parallels the definition of financial
products features and risk factors operated by the financial analysts within
the research department,

e the relation framework block represents the relations existing between
the various financial variables, irrespective of the particular pricing
algorithms that one chooses to associate with these relations, whereas the
pricing model block is the set of financial pricing algorithms that can be
used for valuation purposes. Thus these two blocks parallel the task
achieved by quantitative analysts within the research department,

e the portfolio block represents the portfolio managed by the front-office,
e the financial context block represents the data that have been validated

by the middle-office,

Figure 2

Real world’s
financial
products

o the product graph block is the processed image of the bank’s traded
assets within the risk management system, whereas the Results block
contains the prices and the risk parameters that are used to conduct the
bank business.

2 The algebraic set-up

We shall now proceed with a formal algebraic description of the issues
raised by the design of a risk management system.

2.1 Financial product types

A system of financial product types is a triple (G, N, f) where:

e The set N is the set of names,
o The set G is a set of graphs called the set of types,
e The map f:G — N is an into map called the naming function.

Furthermore, G possesses the following properties:

o the elements of G are directed, acyclic and rooted graphs,

o the set G is closed. By closed, we mean that given ¢ € G and a node n of
g, the sub-graph g(n) of ¢ starting at n — i.e. the subset of ¢ of all elements
lower than n — is also an element of G.

To deal with multiple currency products, we impose the following
conditions on the triple (G, N, f):

e The set N possesses two elements named ”Numeraire” and "Exchange
Rate”,

e every type g € G such that f(g) = "Numeraire” is minimal — i.e. it
possesses a unique node —,

e every non minimal g € G with f(g) # "Exchange Rate” possesses a
unique edge pointing towards a minimal node,

e every g € G with f(g) = "Exchange Rate” possesses exactly two edges
pointing towards two distinct minimal nodes.

An example of a closed system of financial product types with multiple
currencies is given in figure 3. The order relation on a graph of the
product types set corresponds to the relation on real financial assets defined
by ”A is an underlying of B”. Thus, at the type level, there exists an edge
from the type of B pointing towards the type of A.

Figure 3

Best of a call and a
put written on the
same share

-

Best of two calls
written on distinct

shares C>

Composite call

<j Plain share
=

Vanilla Put

(=

Exchange

t
Vanilla call o)
Numéraire
= "N

In figure 3, the set of values assumed by the naming function is
{N,E,S,C,P,CO,CP,CC}

where the symbols have the following financial interpretations:

— the symbol N stands for the type of a "Numeraire”,

— the symbol F stands for the type of an ”Echange rate”,

— the symbol S stands for the type of a ”Share”,

— the symbol C' stands for the type of a "Call”,

— the symbol P stands for the type of a "Put”,

— the symbol C'O stands for the type of a ”Composite call”,
— the symbol C'P stands for the type of a ”"Best of call-call”,
— the symbol C'C stands for the type of a "Best of call-put”.

2.2 Attribute framework

An attribute framework is a triple (N, A, Att) where:

o the set A is a set called the set of the names,
o the set A is a set called the set of all attributes,
o the set P(A) is the power-set of A and the map

Att: N = P(A)

is the attribution map.

Given a system of financial product types (G, N, f) and an attribute
framework (N, A, Att), with the same set of names, we can build the triple

PF =(G,P(A), Atto f)

Whence the map Att o f can be treated as a new naming function. Such a
triple PF is called a pricing framework.

The set of simple attributes of a given product type ¢ in the pricing
framework (G, P(A), Atto f) is the set

S, ={(z,y) G x Al x € gand y € Atto f(z)}

where € g means that x is a node of g.

10

2.3 Relation framework

Given a poset (P, <) a closure on P is a map @) : P — P for which the
following properties hold:

e the map () is idempotent —i.e. Qo Q) =@ —,

e given any x € P, x < Q(x),

e given any v,y € P,z <y = Q(z) < Q(y).

A simple relation framework with respect to a product type ¢ is a
closure on the power-set P(S,) of the set of simple attributes of g.

Given a product type ¢ and a simple relation framework), for ¢, the
image @ () of a subset x of the set of attributes S, of ¢ represents the set
of all attributes that can be computed from x. Thus the three conditions
stated above have the following financial interpretation:

e the map (), does not create any additional information,

e saying that = can be computed from z is a tautology,

e if y contains more information than x, then Q,(y) contains more
information than Q,(x).

Given a product type ¢ and a simple relation framework), for ¢, an
attribute @ € S, of ¢ is said to be well-defined with respect to x C S, if
there exists z C x

Yy C Sy, a€Quly) = y CQ,(2)

This condition ensures that if there are two different ways to compute a
from x, both computations must, at the relational level, lead to the same
result.

Given a pricing framework (G, P(A), Atto f), a relation framework is a
family RF of simple relation frameworks

RF = (Qg)geg

where for all g € G, @), is a simple relation framework for g.

2.4 Pricing model

Given a relation framework RF, a pricing model PM is a triple

PM = <(D0ma)a€A7 (Faf)gegvl’csg’ J‘)

11

such that:

e all the elements of the family (Domyg)a.ca are sets,
eforallge G, CS,, FYis amap

F?: Dom(x) — Dom(Q,(x))U{L}

where for all © C S, the set Dom(x) is defined by

Dom(z) = H Domy,, ()

uew

eforallge G, v CS,, L& Dom(x).

Given a type g € G, the set Dom(x) represents the set of all values that can
be syntactically assumed by attributes of x. Given a certain assignation

a € Dom(z), the function F? checks whether the assignation is value-wise
coherent and maps a to:

— either an element of Dom(Q,(x)) if a is a value-wise coherent assignation,
— or the symbol L if @ is not a value-wise coherent assignation.

Thus, the function F¢ performs two operations: it checks whether the data
passed to it is coherent and computes the maximal set of data that can be
determined from x.

For the computation results to be coherent we must further impose a
transitivity condition on the set of pricing functions (F¥) (see figure 4).
Given a type g € G and two subsets x, y of attributes of ¢ with x C y
denote I17_, the natural projection — component-wise — from Dom(z) to
Dom(y) —i.e.

e

I,y Dom(x) — Dom(y)
Given a type g € G and three subsets x, y and z with y C P(x) and
z C P(y), we say that the transitivity condition holds if

g — 119 g g g
Oy(e)—ss © FI = HQg Lok o HQg) © FS

(v)—= (z)—=

2.5 Financial products

We have already outlined that financial products possess a hierarchical
structure. Thus, denoting by W the set of all financial products, there
is a natural order relation on W defined by @ < b if a is an underlying of b.

12

SJ[NSAI dures Y} 0) pedy syped om) Y[,
7 (X)d<X (T

2 (XA A—(X)d<X (I
: 77 0) X woJj syjed om .

(A)d

e

(X)d

- B

13

Our hypothesis is that all financial products have a type and that there
exists a strictly increasing onto map:

W —g

Furthermore the type system is faithful, for all financial product p € W
the sets ®(p) and {¢ € W|q < p} are isomorphic as directed graphs.

2.6 Construction of the product graph

Let & be the set
€ ={(p,g) € Wx(Glge ¢(p)}
and let R be the relation defined on &£ by

(P g)R(P.¢) = p<p and g=¢

Finally let S be the smallest equivalence relation containing R. We denote
7 the natural projection

T:&—E/S

A portfolio Port is a linear combination of financial products. The base
B(Port) of the portfolio is the subset of W of all financial products
appearing in Port with a non-zero coefficient. The product graph of the
portfolio Port is the image of B(Port) by the map .

All financial products mapping to the same x € £/S have the same type,
therefore we can define a map

type : £/S — G
Thus we can define the set of all attributes of the portfolio Port by
Sport ={(x,a) € E/S x Alz € n(B(Port)),a € Atto f(type(x))}

A example of a product graph construction is given in figure 5.

2.7 Financial context

A financial context for the portfolio Port is an element of the set

Dom(Porty =[] (Dom(b)u{L})

beB(port)

14

sanquy

%_Ew
1npoad

ayy o],

CEEN
ayy o],

AT [+X ¥ [= ofop.104

15

The base of the financial context ¢ € Dom(Port) is the subset of Spy
defined by

Base(Port) = {(x,a) € B(Port) x Ale(z,a) #L}

3 Computations on the product graph

We have shown how the strong typing we have imposed on financial
products has allowed us to avoid financial data layering by providing a
unified treatment of computational requests — e.g. the same computational
request may contain both the computation of a price and the computation
of an implied volatility. One of the key features of our framework is that it
does not suffer the usual drawback of flexible systems that are often
unstable.

We shall demonstrate in this section that our model is both flexible and
reliable. To this purpose we shall focus our attention on algorithms
allowing the determination of data by working on the relational framework.
Such algorithms express intrinsic properties of the product graph with
respect to a given relational framework.

Remember that a computational request is a set of assigned data together
with a set of unknown data.

We shall concentrate our attention on threefold algorithms obeying to the
following pattern:

o determine what data can be computed from the set of all initial assigned
data,

e identify a best computational sequence for every computable data,

e perform the set of selected computations and, after every elementary
computation, check the sanity of the intermediate results.

3.1 Reachable data analysis

An attribute is reachable from a financial context if it is in relation, via the
relation framework, with the base of that context.

Obviously, given a financial context ¢, taking the union of its projections on
all product types does not yield the set of all reachable data as it does not
account for inter-product redundancies within the portfolio.

16

Furthermore, it is clear that computing all the productions of the complete
product graph would immediately yield the set of reachable data for any
financial context. However, this approach is obviously untractable as for a
product graph with n distinct attributes, it requires the knowledge of all
the values assumed by a function defined on the power-set 2".

To make our point, let us consider the case of a portfolio consisting exactly
of one share, one put and one call. Let Sy, d, o be the spot, the continuous
dividend rate and the volatility of the share, let Fy, Kp and Tp be the
price, the strike and the maturity of the put and let Cy, K+ and T be the
price, the strike and the maturity of the call. We assume that the interest
rate r is constant and we adopt the Black & Scholes methodology.

Let ¢ be a context of witch the base is the set of data r, d, So, K¢, Kp, Tc,
Tp, Py. On the one hand, adopting the restrictive product-by-product
projection approach would only enable us to compute the share volatility —
whereas by transitivity, the price of the call also belongs to the set of
reachable data. On the other hand, the product graph we have considered,
although very small, already possesses 10 distinct attributes so that
computing the production of the complete product graph requires a
knowledge of 2'© = 1024 associations between sets of attributes.

A computationally efficient solution to the reachable data problem is given
by the linear complexity algorithm we shall now describe. This algorithm is
an iteration on a three steps procedure: dispatch, expand and update.

o In the dispatching phase, we take the projection of the financial context
base on every product in the portfolio. Mathematically dispatching comes
to taking for every product in the portfolio the intersection of its set of
attributes with the context base. We know that this dispatching process is
well defined because the strong typing requirement ensures that two
distinct attributes of a given type cannot be mapped to the same attribute
of the product graph.

o In the expanding phase, one computes for every product in the portfolio
the production of the subset obtained in the dispatching phase by
projecting the context base into the product set of attributes. Thus, we
exploit product-by-product the information present in the relation
framework.

o In the updating phase we take the union in the product graph of the
projections of the new product-wise sets of attributes obtained during the
“expanding” phase.

The iteration terminates if the result of the updating phase coincides with

17

the argument of the expanding phase. This means that the context d that
has been obtained from the initial context is a fixed point for the iteration
procedure

x — dispatching — expanding — updating > 2’

ie. d=4d.

This algorithm (its principle is illustrated in figure 6) is meant to
determine all the data that can be computed from a given input. However,
one usually restricts one’s attention to a given subset = of the set of all
data. Thus, if the base of a context contains x no supplementary interesting
information can be found at the search scope through the dispatch, expand
and update procedure. Thus, given an analysis scope z, the termination
condition of the dispatch, expand and update iterative procedure may now
be written:

xrCdord=d

Obviously, if no restriction is placed on the analysis scope — i.e. = is the set
of all attributes — this termination condition is the same as the first
termination condition stated. An example of the algorithm (with no
restriction on the scope) is given in figure 7.

3.2 Choosing a computation path

Let us consider the update step of the algorithm described above. Observe
that if the fixed point context solution of the algorithm has not been
reached, then there are in the base of the output context data that are not
in the base of the input context. In the dispatch, expand and update
procedure described above the interesting point is not how new data items
can be computed but what new data items can be computed. Indeed at a
given time, the same data may be obtained via the projections of the input
context on two distinct financial products. Thus to be able to perform a
computation round, we must be able to choose at every time step, and for
every reachable data, the product from which it should be computed.

18

Determination of
the computation

path

Figure 6

19

Product

Request: compute the price Co of the call
By-product: volatility ¢ of the share

Inputs

Dispatch

20

A naive algorithm is:

e perform the dispatch phase and the expand phase as described above,
e during the updating phase, for every new reachable data, choose a
product from which it can be computed and compute its value,

e perform the update phase as described above with respect both to the
context base and to the set of values — newly computed values and old
values — associated with the context base.

3.3 Eliminating redundant computations

The algorithm just stated generally produces redundant data and the worst
case leads to the maximal number of redundancies — largest number of
unnecessary computations.

We now describe an algorithm that eliminates redundant computations by
performing selective updates:

e perform the dispatch phase as in the dispatch, expand and update
algorithm,

e choose a maximal subset of financial products in the portfolio such that
their productions are non trivial — i.e. the base of the product is a strict
subset of the base of the production — and the images of their production
base in the product graph are disjoint,

e perform the update phase as described above with respect both to the
products in the maximal subset chosen during the expand phase and to all
the other untouched products.

The properties # C P(x) and * Cy = P(x) C P(y) of production
functions ensure that this selective algorithm leads to the same result as the
naive algorithm, although usually with a higher number of computation
steps but a lower number of total computations.

3.4 Eliminating useless computations

The selective algorithm we have described above eliminates redundant
computations, however it does not eliminate useless computations. For
example, if the portfolio contains two distinct underlyings and two calls —
one written on each underlying — this algorithm may yield the prices of
both calls even though the scope has been restricted to the price of only
one of the calls.

21

Let x, be the intersection of the base of the final context given by the
previous selective algorithm and of the search scope and let ¢q,..., ¢, be
the n contexts created during the iterative procedure.

We proceed as follows:
o Let a, be the subset of z,, of all the element of z,, that cannot be
obtained through a trivial production from the elements of ¢,_1,

e Given a € a,, the selective algorithm yields a unique production P, that
associates the subset P '(a) of ¢,y with a subset of ¢, containing the
element a; we set

Tpo1 = (U Pa_l(a)> U (2, — ay)

aCan

e working backward, we define the sets =, _5, ..., ¢ in a similar manner —
x; is obtained from x4,

e starting from the index 1 = 0, we perform in turn, for each value of 7, all
the computations associated with the productions P, where a assumes all
the values a € x;14.

Figure 8 illustrates the principle of this algorithm.

3.5 Choosing a computation path with a utility
function

Financial computations are usually time and memory consuming, thus it is
natural to introduce a utility function for every computation, inversely
proportional to the computation cost. However, other factors may be
accounted for in the utility function such as:

e the precision of the pricing scheme used,

e how well a given pricing scheme is suited to the specific needs of its caller,
e the probability that an algorithm may abort and require a human
intervention — manual correction.

A given set of utility functions can be viewed as an optimisation framework
defined on the pricing framework.

22

Q INgI |

<

suonyenduwod
AAIIOYJD Y} SULIOLIdJ

1>

suonenduiod AIessadouun ou
:5d9)s AIBSSINIU) SAUTULII(

<

suonenduod Juepunpa ou
:qjed uonendwiod Iy) SAUNWINI(

sindjnQ) sinduy

23

The selective algorithm described above may be reformulated to account for
the optimisation framework:
e the dispatch phase is the same as that of the pure selective algorithm,

e in the update phase, instead of choosing any maximal product subset, we
choose a maximal subset A that maximises the sum of its utility functions

E U, = max E Uy
-yl B maximal b

Again this algorithm clearly leads to the same result as the naive algorithm
and:

— 1l.e.

e at every computation step, the algorithm maximises a given utility
function associated with the optimisation framework,

e it converges in the same number of steps as the simple selective algorithm.

Extensions to parallel computing

The utility function optimisation algorithm described above is a greedy
algorithm. Indeed, it chooses the best computation — with respect to a given
set of utility criteria — at every time step, and this corresponds to what is
expected from a risk management system as the control must be focused on
elementary computation steps. Finding a globally optimal computation
path is altogether out of the risk management scope and nearly untractable
as the algorithm determining the shortest path between two vertices of a
graph with n vertices has complexity O(n?) — remember that here n is of
the kind O(2?) where p is the number of attributes, so this would be 47.

Another version of the selective algorithm for the determination of a
non-redundant computation path is:
e perform the dispatch phase as for the selective algorithm,

e choose a product such that the production of the projection of the
context base on that product is not trivial and perform the expansion with
respect to that unique product,

e perform the update phase as for the selective algorithm.
We shall give two reasons why we favour the first selective algorithm we
have introduced:

o the algorithm is parallel by its very nature as at every computation step
it picks out all the necessary computations that can be performed

24

simultaneously — the synchronisation process is taken care of in the update
phase —,

o the algorithm is much more amenable than its sequential version to local
optimisation with respect to a given set of utility criteria.

Obviously, the algorithm can be further parallelized if it can be shown that
some productions are disjoint, in which case they would not need to be
updated simultaneously. After the determination of the computation path,
the knowledge of the relational framework makes it possible to perform this
further analysis.

25

References

Black, F., and M. Scholes, 1973, " The pricing of options and corporate
liabilities”, Journal of Political Economy, 81., pp. 637-659.

Dordain, J.N., and N. Singh, 1999, Finance quantitative, Economica, Paris.

Gamma, E., R. Helm, R. Johnson and J. Vlissides, 1995, Design patterns,
Addison-Wesley, Reading, MA.

Hull, J., and A. White, 1994, ”Numerical procedures for implementing term
structure models”, Journal of Derivatives, 5., pp. 177-188.

Knuth, D., 1973, The art of computer programming, Volume 1, 2 and 3,
Addison-Wesley, Reading, MA.

Smithson, C.W., C.W. Smith Jr. and D. 5. Wilford, 1995, Managing

financial risk, Irwin, New-York.

Weiss, D.M., 1993, ” After the trade is made: processing securities
transactions”, New-York Institute of Finance.

26

