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Abstract
The study of tail events has become a central preoccupation for

academics, investors and policy makers, given the recent financial tur-
moil. However, what differentiates a crash from a tail event? This
article answers this question by taking a risk management perspective
that is based on an augmented extreme value theory methodology with
an application to the French stock market (1968-2008). Our empiri-
cal results indicate that the French stock market experienced only two
crashes in 2007-2008 among the 12 identified over the whole period.

Key Words: Extreme Value Theory, Volatility, Risk Management.
JEL Classification: C4, G13, G32

1 Introduction
Financial markets throughout the world have been subject to financial dis-
asters during the last twenty years (October 1987, the Long Term Capital
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Management collapse and Russian debt crisis, the Latin American and Asian
currency crises and more recently, the U.S. mortgage credit market turmoil,
followed by the bankruptcy of Lehman Brothers and the world’s biggest-ever
trading loss at Société Générale). Stock market crashes are some of the most
fascinating subjects in finance. However, there is no unique definition of a
crash. Financial literature on that topic creates some confusion on rare events
usually called extremes, crashes or crises. Even if it not straightforward to
define a priori a crash, the investors may be able to identify a posteriori a
crash through its panic effect; it can have been induced by systemic risk, liq-
uidity risk, regulatory risk or even trading algorithm risk. For example, the
biggest intraday drop in the history of the Dow Jones index on May 6, 2010
was interpreted by market participants as a crash. Indeed, the computer-
automated trades cause a total drop of 9.16% from the previous day’s close;
however, the market rebounded to close down by 348 points.

The Extreme Value Theory (EVT) has widely documented1 ways in which
extreme events can be quantified. A general discussion on the application of
EVT to finance is proposed by Embrechts, Klüppelberg and Mikosch (1997),
McNeil (1999), Coles (2001), and Beirlant, Goegebeur, Segers and Teugels
(2004). However, Longin (1993) remains the only one in this literature to
address explicitly the question of the existence of crashes. Longin (2001)
addresses the same question by applying EVT to two sub-samples; one sub-
sample of the so-called crashes and an other sub-sample from other minima.
He finally concludes that crashes and non-crashes have no statistical dif-
ferences because they are drawn from the same unconditional distribution
of extremes. This conclusion may have closed the debate, earlier than ex-
pected, in this literature. Indeed, if the conclusion is not questionable within
this literature2, the application of EVT to raw returns may cause a problem
to identify real crashes from large negative returns. Actually, the investors

1Longin (1993), Longin (1996), McNeil (1997), Danielsson and de Vries (1997), McNeil
and Saladin (1998), Christoffersen, Diebold and Schuermann (1998), Diebold, Shuermann
and Stroughair (1999), McNeil and Frey (2000), Jondeau and Rockinger (2003), Gilli
and Këllezi (2000), Bali and Neftci (2002), LeBaron and Samanta (2004), Danielsson and
Morimoto (2000), Longin (2001), Gençay, Selçuk and Ulugülyagci (2003), Mandira (2004),
Tolikas and Brown (2005), Gettingby, Sinclair, Power and Brown (2006). This literature
has become risk management oriented.

2This issue has been a debate among economists (see Gabaix, Gopikrishnan, Plerou,
Stanley (2005) who conclude that daily crashes are not outliers to the distribution of
returns).

2



are not symmetrically affected by a negative return that comes from a high
volatility period or by an equal negative return that comes from a low volatil-
ity period. Indeed, investors are more cautious during high volatility period
and may panic much more if an extreme event occurs during a low volatility
period due to the surprise effect. For this reason, this article considers the
role of volatility in the crash definition.

The first question to address is why is it useful to identify a crash? Be-
cause this may helps investors, regulators and policymakers to differentiate
warning signals according to their scale level; for these same reasons, the
NBER defines expansion cycles and recession cycles in the US since 1854.
For instance, the recognition of crash events may justify intervention policies
from economic agents with the right timing. For example, would the iden-
tification of a crash in 2007 after the collapse of the U.S. Housing Bubble
have forced the policymakers to save Lehman Brothers and avoid the huge
international volatility spill over of 2008? However, all crashes do not lead to
a macro-economic downturn; for example, the 1987 stock market crash did
not generate an economic contraction. Therefore, if all crashes affect the risk
aversion of investors, they do not equally affect the economic business cycles.
The second question is how can we define a crash versus a tail event? Defining
a tail event is straightforward. Indeed, it corresponds to any return located
in the tails of the distribution; an adverse tail event represents an negative
extreme return for a long position and a positive extreme return for a short
position. In addition, if a crash (anti-crash) corresponds to a negative (pos-
itive) extreme return, the reverse is not true. Indeed, the largest negative
return during a bullish period will surely not be a crash; for example, the
minimal return of the S&P 500 stock index during year 1999 is -2.85%.

We introduce a definition of stock market crash that is risk-management
oriented; per hypothesis, stock market crash is defined as being sudden, sig-
nificant and brief:

Sudden event. This corresponds to a price variation that is indepen-
dent of the current volatility regime. It refers to a high-return shock during
a period of low volatility and not to a small-return shock during a period of
high volatility. Given the asymmetric nature of volatility, returns and volatil-
ity are negatively related in equity markets; this relation is more pronounced

3



for large negative returns. When the volatility is high, financial markets over-
react to bad news (See e.g. Black (1976), Campbell and Hentschel (1992),
Beckaert and Wu (1992) for the so-called "leverage effect" and "feedback ef-
fect" hypotheses); this over-reaction is characterized by large volumes of sell
orders during stress periods, which contribute to exacerbate downside volatil-
ity (see more recently Gabaix, Gopikrishnan, Plerou and Stanley (2003) on
the relationship between large fluctuations in prices, trading volume and the
number of trades.). In contrast, when the volatility is low, bad news can
drive markets into unexpected collapse; this was the case after the heart at-
tack of the U.S. President Eisenhower on September, 26 1955 with a one-day
drop of 6.85% on the S&P 500 stock index.

Significant decline. This corresponds to a price variation whose mag-
nitude is high (domestic crash) and induces systemic risk throughout the
world financial markets, increasing the stock market index correlation levels
(international crash). Equity markets react not only to their domestic po-
litical and economic factors but also to trading pressures around the world.
Such was the case on October 19, 1987 with a decline of 22.89%; this one-day
drop is comparable to the percentage drop that occurred over October 28 and
29, 1929 with a respective decline of 12.82% and 11.73%.

One-day horizon. Shiller (1988) notices that "The concentration of
attention on 1987 as a unique year in stock market history is to some extent
an artifact of the one-day interval chosen." But if the shock is sudden and sig-
nificant, it is almost impossible to hedge a portfolio within a one-day horizon.
In that sense, the one-day interval choice is no longer artificial. Choosing a
longer period for identifying a crash remains possible from a macro-economic
perspective, but it will be no longer relevant for a risk management perspec-
tive because the crash is supposed to be sudden. Choosing a shorter period
for identifying a crash is limited to the existence of circuit-breakers; for ex-
ample, trigger levels for a market-wide trading halt are set at 10%, 20% and
30% of the Dow Jones index; another example in France, when the price
movement of a share exceeds 10% from the quoted price at the close of the
previous market day, quotation is suspended for 15 minutes. These trading
curbs limit physically the possibility of intra-day crashes. In addition, trad-
ing pressures may induce several intra-day trading halts whose global effect
will appear in the daily closing price. Therefore, we argue that it is almost

4



impossible to hedge a portfolio against a crash within a time period of one
day or less.

The purpose of this article is therefore to disentangle crashes from tail
events. An augmented extreme value theory methodology is employed. In
addition, an application to the French stock market index is provided, using
the longest daily time series ever used (1968-2008) for this country. This
choice is motivated by a long history of crashes illustrated by recent litera-
ture3.

The remainder of this article is organized as follows. Section 2 synthesizes
the theoretical background of extreme value theory used in the empirical
section. Section 3 presents an analysis of the data, the filtering process
and its economic implications. Section 4 analyses the tail distributions to
differentiate crashes from extremes. Section 5 gives the conclusions.

2 Methodology

2.1 Tail distribution

Let X1, ...Xn be a sequence of random variables corresponding to stock re-
turns. If these variables are independent and identically distributed (i.i.d.)
and if F is the cumulative distribution function then,

Pr(Mn < x) = Pr(max(X1 < x, ..., Xn < x) = (F (x))n (1)
3Many authors (e.g., Gallais-Hamonno and Arbulu (2002), Le Bris (2008), Le Bris

and Hautcoeur (2008)) provide a rich long-term analysis of the French market’s extreme
behavior. Since there are no official statistics on any aggregate stock market index from
the XIX century, they did an important work of recomposing a French stock market index
a posteriori. In contrast, in this study, we rely on daily available prices. They use monthly
returns (Gallais-Hamonno and Arbulu (2002) recognize that using monthly returns force
them to remain under a Gaussian framework; they also recongnize that a high monthly
variation can appear as an extreme event while it can stem from successive weak daily
negative returns), while we use daily returns; they provide a historical perspective, while we
also consider a forecasting outlook; they evaluate market performance, while we discuss the
risk management implications; they usually define crashes as standard deviation multiples
of monthly periods (Gallais-Hamonno and Arbulu (2002) define crashes as +/-3 standard
deviations versus +/-2.5 for Le Bris (2008)), while we test a less restricted definition of
crash, based on an extreme value theory approach.
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This has two consequences. First, the law of maxima can be easily ob-
tained once we know F . Second, the law of minima is directly deduced from
the law of maxima since we have Mn = maxi=1,...,n(Xi) = −mini=1,...,n(−xi).
Therefore, we only expose the part of the theory for the upper tail of the
distribution. Let F be an unknown function and look for approximate fam-
ilies of models F n, which can be estimated from extreme observations only.
We consider the behavior of F n as n −→ ∞. Let us consider a distribu-
tion function Fu representing a probability that the value of X exceeds the
threshold u by at most an amount x given that X exceeds the threshold u.
The conditional distribution of excess losses over the threshold u is defined
as,

Fu(x) = Pr(X − u ≤ x|X > u) (2)

The conditional probability can be written as

Fu(x) =
F (x+ u)− F (u)

1− F (u)
(3)

It may be difficult to compute Fu as there are few observations in the con-
sidered area. However, Balkema and de Haan (1974) and Pickands (1975)
showed that when the threshold u is sufficiently high, the distribution func-
tion Fu of the excess beyond this threshold can be approximated by the
Generalized Pareto Distribution (GPD)

Fu(x) ≈ Gξ,β(x) (4)

This limit distribution has a general form given by

Gξ,β(x) =

{
1− (1 + ξx/β)−1/ξ, for ξ 6= 0

1− exp(−x/β), for ξ = 0
(5)

where β ≥ 0 and where x ≥ 0 when ξ ≥ 0 and where 0 ≤ x ≤ −β/ξ
when ξ < 0 . β is a scaling parameter and ξ is the tail index. The tail
index is an indication of the tail heaviness, the larger ξ , the heavier the
tail. This distribution encompasses other type of distributions. If ξ > 0
(ξ < 0) then it is a reformulated version of the ordinary Pareto distribution
(Pareto type II distribution) and if ξ = 0, it corresponds to the exponential
distribution. Smith (1987) showed that the maximum likelihood estimates of
the GP distribution parameters are consistent and asymptotically normal for
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large samples provided that ξ > −0.5 . In contrast to the normal distribution,
which is defined for each moment, the GPD heavy-tailed distribution is not
necessarily defined for each moment. Indeed, a large set of data in physics
or insurance have infinite second moments. The tail index parameter helps
examine how many finite moments the marginal distributions have. For
example, an estimate of ξ < 0.5 implies finite variance; an estimate of ξ <
0.25 implies a finite fourth moment, etc.

2.2 Threshold selection

Threshold selection is subject to a trade off between finding a high thresh-
old where the tail estimate has a low bias with a high variance or finding a
low threshold where the tail estimate has a high bias with a low variance.
The standard practice, to overcome the balance between bias and variance,
requires adopting the lowest threshold as possible. There are two families
of approaches for threshold selection. The first one is visual inspection and
the second one is automatic selection. Visual selection denotes a plausible
threshold choice based on the results of the two or more plot methods. Adap-
tive selection denotes the application of an automated method which aims
at minimizing asymptotic mean squared error (see Beirlant et al. (2004),
Section 4.7 ii).
We follow Gumbel (1958), Embrechts, Kluppelberg and Mikosch (1997) and
Coles (2001) who suggest visual inspection methods for the observation of
the tail region. Two approaches exist. The first approach corresponds to
explanatory techniques carried out before the model estimation. The second
approach corresponds to the assessment of the parameter estimate stability
while fitting various models through a range of different thresholds. The
first visual inspection method is based on the mean of excesses of the GPD
defined as,

E(X − u|X > u) =
σu

1− ξ
(6)

Denote σu the value of the GPD scale parameter for a threshold u > u0.
The sample mean excess function is termed mean residual life plot (MRLP).
The threshold detection is done by choosing the smallest observation to the
right of which the mean excess function remains approximately linear as a
function of the ordered data. Confidence intervals are associated to the graph
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given the approximate normality of sample means. Let nu be the number of
exceedances over the threshold u, the MRLP is[

u,
1

nu

u∑
i=1

(xi − u)

]
(7)

However, MRLP can be difficult to interpret for threshold detection. A
complementary visual method is to check for parameter stability. It cor-
responds to the second visual inspection method that involves fitting the
GPD over a range of thresholds. This method allows observation of both
the parameter estimate stability and variance. A range of possible thresh-
olds would correspond to these criteria of relative stability and low variance.
Indeed, plotting ξ̂ with its confidence intervals against u allows the selection
of a threshold that is as low as possible, such as selecting u0 for which the
estimates of ξ remain near constant. It is defined by[

ξ̂, Gξ,β(x) = 1− (1 + ξx/β)−1/ξ
]

(8)

For the optimal threshold selection method, let us consider an ordered
sample of size nu, Xnu , ..., X1 with Xk being the nthu upper order statistic.
The Hill (1975) estimator is defined by[

nu, ξ̂
H
nu

=
1

nu

nu∑
i=1

(logXn−i+1 − logXn−nu)

]
(9)

The Hill estimator is asymptotically normal. The choice of the Hill index
is motivated by the fact that it has been proven to be efficient in the case
of a Fréchet-type distribution (Longin (1996)). However, an important issue
is to choose an appropriate nu, which determines the red line between the
tails and the centre of the distribution. The more nu increases, the more the
bias is large but with small variance. The Hill’ estimator is of practical use
for determining the threshold by drawing a Hill-plot. The value of nu can
be inferred by identifying a stable region in the graphic. However, the Hill
plot does not quite stabilize throughout its range and therefore it is usually
hard to come up with a value for nu. It has been popular for the optimal
threshold 4 to be estimated such that the bias and variance of the estimated

4Many researchers have tried to overcome this problem of finding the optimal threshold.
Among then, Hall and Welsh (1985), Hall (1990), Dacorogna, Muller, Pictet and de Vries
(1994), Beirlant, Vynckier and Teugels (1996), Danielsson and de Vries (1997), Daniels-
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Hill tail index vanish at the same rate and where the mean squared error is
asymptotically minimized. Usually, AMSE is obtained through a sub-sample
bootstrap procedure.

2.3 Tail risk management measures

Every day risk management practices require evaluating the potential risk of
loss. The recent severity of losses that struck the banking system requires
extreme-oriented risk-measures. First, the Value-at-Risk (VaR) approach
has become the benchmark risk measure for bank risk management. VaR
summarizes the expected loss over a target horizon within a given confidence
interval. It corresponds to a decline in the portfolio market value over a given
horizon for a given probability level. A loss which exceeds the VaR thresh-
old is termed a VaR break. Accurate estimation of the VaR is important
but is subject to a traditional trade-off between risk and returns. Indeed,
if the risk management overestimates the VaR, the trading desk return ob-
jectives may not be reached and the top management will impose a penalty
on their personal wealth. In contrast, if the risk management undereresti-
mates the VaR, the trading desk risk constraints may not be reached and
the top management will impose a penalty on their personnel wealth. In any
cases, VaR calculation often requires determining the probability distribu-
tion of the portfolio value change. However, there is no need to fully identify
the probability distribution because only the extreme quantiles are of inter-
est. Extreme VaR estimates are computed by inverting the tail estimation
formula based on the loss distribution

V aRq = F−1(q) (10)

where the quantile function F−1 is the inverse of F and q is the qth quantile
of the distribution F of profit and loss. We recall that n is total sample size
and nu the number of exceedances over the threshold u, so the tail estimator
is given by

F (x) = 1− nu
n

(
1 + ξ

x− u
β

)−1/ξ

(11)

son, de Haan, Peng and de Vries (2001), de Sousa and Michailidis (2004), and Beirlant,
Goegebeur, Teugels and Segers (2004). The optimal tail size may vary from one method
to another; however, the tail estimates remain generally stable.
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The VaR expression can be computed upon the maximum likelihood GPD
parameter estimators

V aRq = u+
β

ξ

[(nu
n

(1− q)
)−ξ
− 1

]
(12)

VaR models have been criticized for their inadequacy. First, VaR can be
misleading during volatile periods (e.g., Yamai and Yossiba (2005), Bao et
al. (2006)); however, the use of GPD-VaR on GARCH-filtered data answers
this problem. Second, VaR disregards any loss beyond the VaR level. Third,
it has not the nice property of sub-additivity, in that the VaR of a portfolio
can be higher than the sum of the respective VaRs of each individual asset in
the portfolio (Artzner, et al. (1999)). For example, the failure of VaR to be
sub-additive can drive the clearinghouse to be exposed to large adverse price
movements. However, Danielsson, et al. (2005) demonstrate that VaR is sub-
additive for the tails of all fat-tailed distributions, provided that the tails are
not super fat (e.g., an asset that has a first moment that is not defined).
Second, a complementary measure known as the Expected Shortfall (ES) is
usually used in, for example, margin requirements. This accounts for the
sizes of tail losses since it evaluates the expected loss size given that VaR is
exceeded

ESq = V aRq + E (X − V aRq|X > V aRq) (13)

where the second term corresponds to the mean excess function over the
threshold V aRq. The explicit value for expected shortfall related to the VaR
is given by

ESq =
V aRq

1− ξ
+
β − ξu
1− ξ

(14)

Filtered VaR and ES models are computed using the standardized return
series. Indeed, most of the recent literature confirms the superior in and
out-of-sample performance of the risk management models when combining
a heavy-tailed GARCH filter with an extreme value theory-based approach
(McNeil (1999), Acerbi (2002), Kuester, et al. (2005), Inui and Kijima (2005),
Martins and Yao (2006), and Ozun, et al. (2007)). In fact, Kuester, et al.
(2005) note precisely that the introduction of GARCH volatility dynamics
almost uniformly improves VaR prediction performance in contrast with the
unconditional approach. Third, the last measure known as the return level
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(Gumbel (1941)) is convenient for both model presentation and validation.
The effect of extrapolation is highlighted. Scarcity produces large variance
estimates. Let term ζu be the probability of exceeding the threshold u

Pr(X > u) = ζu =
nu
n

(15)

Consider xm as the return level that is exceeded on average once every m
observations. It is solution of

Pr(X > u) = ζu

[
1 + ξ

(
xm − u
σ

)]−1/ξ

=
1

m
(16)

Equivalently, the m− observation return level is

xm = u+
σ

ξ

[
(mζu)

ξ − 1
]

(17)

Return levels are expressed in annual scale so that the N -year return level
is the level expected to be exceeded once every N years. Consider n250 as the
average number of trading days per year with m = N × n250. The N -year
return level then becomes

xm = u+
σ

ξ

[
(N × n250ζu)

ξ − 1
]

(18)

3 Data analysis

3.1 Data description

The database5 consists of 10,017 daily stock prices that span the period of
time from September, 30th 1968 to December 31, 2008. The French stock
index known as the "Indice Général CAC" has been recomputed after the
1987 stock market crash and renamed as "CAC 40". The closing price was
set to 1000 on December, 31st 1987. The longest data set available from
NYSE-Euronext begins from January, 5th 1962; however, from this date to
September, 13th 1968, the frequency of the stock index is weekly. For this
reason, we choose to begin the period study from September, 30, 1968 until
the end of year 2008. We note the presence of stock index return autocor-
relation for any given lag; in addition, we observe the presence of strong

5I would like to thank Professor Michel Fleuriet who provided me with the data set.
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heteroskedasticity according the Q-statistics. This study makes use of fil-
tered daily data 6 in order to apply EVT techniques to iid observations given
that the fat-tailedness of returns stems from the fat-tailedness of innovations.

3.2 Data filtering process

We examine all the possible specifications within five lags. We test 25 specifi-
cations of ARMA(p,q) models with p = 1, ..., 5 and q = 1, ..., 5 in addition to
25 specifications with ARMA(p,q) + GARCH(1,1). We select the more par-
simonious model. Four criteria are used for comparison: the log-likelihood
value, the Akaike criterion, the autocorrelogram of residuals and squared
residuals and the ARCH effect test. We take care of the trade off between par-
simony and maximizing criteria. We find that the ARMA(2,4)+GARCH(1,1)
model produces the best fit. We then test an alternative model that allows
for leverage effects by considering the contribution of the negative residuals in
the ARCH effect. The ARMA(2,4)+TGARCH(1,1) model improved the fit in
all considered criteria. Define the market log-returns as {Rt}t=1,...,T with T=
10,017 daily observations. The ARMA(2,4) + TGARCH (1,1) specification
is then given as follows

Rt = µ+
2∑
i=1

φiRt−i +
2∑
i=1

θiεt−i + εt (19)

with the innovations εt being functions of Zt and σt

εt = Ztσt (20)

where the standardized returns Zt are independent and identically dis-
tributed, such as:

Zt ↪→ FZ(0, 1) (21)

where FZ is an unknown distribution of Z. The purpose of the time-
varying σt is to capture as much of the conditional variance in the residual
εt in order to leave Zt approximately iid

σ2
t = ω + α (Zt−1σt−1)

2 + γ (Zt−1σt−1)
2 IZt−1σt−1<0 + βσ2

t−1 (22)

6Filtering processes on high frequency financial data are discussed among others by
Dacorogna et al. (2001), Breymann, Dias and Embrechts (2003).
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As the MA(1) term is not statistically significant, we remove it from the
model and set θ1 = 0 . The results for the maximum likelihood estimation
of this model are displayed in Table 1. This model provides very good fit
according to the selected criteria; all the model’s parameters are highly sta-
tistically significant. We therefore extract the maxima and minima from the
return shocks {Zt}t=1,...,T corresponding to standardized demeaned return se-
ries using a time-varying volatility model. Figure 1 shows the evolution of
the CAC 40 stock index (1) prices, (2) volatility, (3) raw returns and (4) stan-
dardized returns. Our discussion is hereafter restricted to the standardized
return maxima +Z and minima −Z.

3.3 Crash event detection

The filtering process contributes to answer the question of how to identify
a crash event from the past. Indeed, from an economic perspective, it cor-
responds to a transformation of daily raw returns into daily standardized
(devolatized) returns. This transformation helps to identify tail events in-
dependent of the associated volatility regime. It is clear that this transfor-
mation allows the disentanglement of a crash from another tail event, whose
magnitude may be amplified by the high level of volatility. More generally,
according to our hypothesis, the stock market crash requires being:

Sudden It means a price variation independent of the current volatility
regime. It refers to a high-return shock during a period of low volatility and
not to a small-return shock during a period of high volatility. Given that
standardized returns Zt are independent and are identically distributed, such
as Zt ↪→ FZ(0, 1), we have

∀t ∈ [1, ..., T ] , Zt = min (Z1, ..., ZT ) (23)

Significant It means a price variation whose magnitude is high. This
magnitude effect can be captured by a jump in the volatility process. Indeed,
asymmetric volatility is a striking phenomenon in equity markets. More pre-
cisely, the so-called leverage effect characterized a negative relation between
past realized returns and conditional volatility. Therefore, a decline in re-
alized returns will be followed by an asymmetric increase in the conditional
volatility. In addition, volatility of stock price changes is directly related
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to the rate of flow of information (e.g. Ross (1989), Maheu and McCurdy
(2004)). This jump volatility effect can be given by

∀t ∈ [1, ..., T ] ,
σt+1

σt
= max

(
σ2

σ1

, ...,
σT
σT−1

)
(24)

International crash: It induces contagion effect throughout international
financial markets, increasing the stock market index correlation level. A
leading U.S stock index such as the S&P 500 can be considered as a bench-
mark for international correlation measure. The conditional correlations are
derived indirectly, in multivariate GARCH models, from the ratio of the
covariance and the product of the roots of the conditional variances 7. How-
ever, various multivariate GARCH specifications remain cumbersome. Engle
(2002) proposes a Dynamic Conditional Correlation model (DCC) with a
two step procedure; the first step requires the GARCH variances to be esti-
mated univariately. Their parameter estimates remain constant for the next
step; the second step parameterizes the conditional correlations directly and
maximizes the log-likelihood function. Engle (2002) finds that DCC model is
often the most accurate among the multivariate GARCH model family. The
contagion effect is given by

∀t ∈ [1, ..., T ] , |ρt+1 − ρt| = max (|ρ2 − ρ1| , ..., |ρT − ρT−1|) (25)

where ρ is the time varying conditional correlation level between condi-
tional volatility changes of the French CAC 40 stock index and the S&P 500
stock index. Even if we introduce the definition of a domestic crash, it sounds
intuitive that a crash should induce systemic risk.

Domestic crash:

∀t ∈ [1, ..., T ] , |ρt+1 − ρt| ≈ 0 (26)

7Given the pair
{
Z,Z

′
}

of standardized returns referring respectively to the CAC
40 stock index and the S&P 500 stock index, ρZ,Z′ ,t is the conditional correlation level,

σZ,Z′,t is the conditional covariance level, and
{
σ2
t , σ

′2
t

}
are the respective conditional

variances of Z and Z
′
. The time-varying conditional correlation is therefore given by

ρZ,Z′ ,t = σZ,Z′,t/
√
σ2
t σ
′2
t . In our case, we consider the time-varying conditional correla-

tion between conditional volatility logarithmic changes of Z and Z
′
respectively denoted{

log
(

σt

σt−1

)
, log

(
σ
′
t

σ
′
t−1

)}
. Results provided upon request.
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One-day time period

∀t ∈ [1, ..., T ] , δt = 1/252. (27)

3.4 Return transformation

The reverse transformation for computing raw returns from standardized
returns is also very useful for understanding the economic meaning of the
statistical inference drawn from standardized return series analyses. Indeed,
many articles applying EVT to standardized returns leave the reader with
few economic interpretations of the results extracted from the filtered se-
ries. Therefore, we need to transform the standardized returns into "equiv-
alent raw returns". As recent literature, to our knowledge, does not pro-
pose any solution, this article proposes a linear transformation based on a
semi-parametric technique that extends the ordinary least squares regression
model to conditional quantiles. Indeed, while the great majority of regression
models are concerned with analyzing the conditional mean of a dependent
variable (standard ordinary least squares); quantile regression (Koenker and
Bassett (1978)) permits a more complete description of the conditional dis-
tribution. It can be used to measure the effect of covariates, not only in the
center of a distribution, but also in the upper and lower tails. Therefore,
quantile regression is the ideal tool for estimation of conditional quantiles of
a response (raw return), given a vector of covariates (standardized returns).
As a consequence, a quantile regression is implemented8 for the left tail and
another one for the right tail. The choice of the percentile level corresponds
exactly to the respective selected threshold levels for each tail, which are
computed in section 3.6. This complementary methodology refers to the
augmented extreme value theory approach.

8The linear conditional quantile function can be estimated by solving β̂nu(q) =
argminβ(q) {

∑n
i=1 ςq (Ri − Ziβ(q)}) where the check function which weights positive and

negative values asymmetrically for any quantile 0 < q < 1 is ςq(v) = v (q − I(v < 0))
where I(.) denotes the indicator function. For the left tail (respectively the right tail),
the intercept is -0.0047 (respectively 0.0033), the slope coefficient is 0.0105 (respectively
0.0099). The parameters are all statistically significant at the level of 1%. The adjusted
r-squared value is 0.5715 (respectively 0.6082). The sum of squares errors between raw
returns and equivalent raw returns is 9.15% (respectively 10.86%). Details are given upon
request.
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3.5 Descriptive statistics of filtered data

Table 1 presents the descriptive statistics of the devolatized log-returns. The
D’Agostino (1970) test of skewness (DAST) under the null hypothesis of
normality supports the alternative hypothesis of skewness with a p-value of
less than 2.2e-16. The Anscombe-Glynn (1983) test of kurtosis (AGKT) un-
der the null hypothesis of normality supports the alternative hypothesis of
a kurtosis different from three, with a p-value of less than 2.2e-16. This
statistic measures the heaviness of the tails relative to normal distribution.
In all cases, the Jarque-Bera statistics yield a strong rejection of the nor-
mality hypothesis. Next, we consider various percentiles from 1% to 99%
as comparisons with those implied by the normal distribution. Again, we
have a departure when comparing the empirically extreme one percentile
with the 2.3263 critical value of the normal distribution. This means that
such a realization would have no probability of existing in a Gaussian frame-
work. The Q-statistic for a given lag is a test statistic for the null hypothesis,
where there is no autocorrelation up to the given order. For 5 and 10 lags,
the Q-statistic is distributed as a χ2

5, χ2
10 and χ2

20 with 95% critical values
of 11.07, 18.31 and 31.41. The correlogram for the filtered series shows no
more dependence because the Q-statistics for the series are lower than the
critical values. Short-term serial dependence remains significantly below the
confidence interval at 95%. Engle’s Lagrange multiplier (LM) test statistic
measures the ARCH effect in the residuals. It computes the number of ob-
servations times the R2 from the test regression of the squared residuals, on
constant and lagged squared residuals up to a given order q. The LM test
statistic is asymptotically distributed χ2

q under general conditions. The null
hypothesis underlying this test assumes that there is no ARCH up to order
q in the residuals. There is no more evidence of remaining ARCH effects at
any lag.

4 Empirical results

4.1 Threshold selection

Threshold selection is usually arbitrarily limited to one method in most of the
literature, while there are many approaches that can be complementary. In
this article, we propose a complete approach for threshold detection, mixing
visual inspection and automatic selection. The sample mean excess func-

16



tion allows for distinction between thin- and heavy-tailed distributions; the
heavy-tailed distribution is associated with a positive slope. We compute
the mean residual life plot (MRLP), which is an estimate of the mean excess
function. The threshold detection is done by choosing the smallest observa-
tion, to the right of which the mean excess function remains approximately
linear as a function of the ordered data. Figure 2 displays the mean residual
life plot. The critical threshold, above which the slope is positive, is around
+1.0 for +Z and -1.50 for −Z. From this level, the sample mean excess
function increases linearly as the threshold increases. This signifies entrance
into a tail area. The threshold plot exposes the stability region of the tail in-
dex parameter and is presented in Figure 3. An investigation of the stability
of the tail index parameter is checked by implementing the General Pareto
distribution over a possible range of thresholds. Even if we note a relative in-
stability, a possible range of stability belongs in an interval of +1.0 and +2.0
for +Z, while it is between -0.50 and -1.50 for −Z. For the optimal thresh-
old detection, we follow Beirlant et al. (2004), who propose a criterion for
which the AMSE of the Hill estimator of the extreme value index is minimal
for the optimal number of observations in the tail. Optimal threshold selec-
tion yields estimates very close to the mean residual life plot. The optimal
threshold9 is around +0.95 (or the 84.80th percentile) for +Z and -1.38 (or
(1-0.9246) i.e., 7.54th percentile) for −Z. It corresponds, respectively, to a
number of upper order statistics of 1,522 and 755 out of 10,014 observations.
The threshold values computed from the optimal algorithm respond to the
criteria of stability and sufficient exceedances with minimum variance. Table
2 summarizes the results for the threshold selection. Due to the convergence
between the three approaches, we consider the threshold optimal values in
this study.

4.2 Tail area detection

The critical threshold of +0.95 for +Z and -1.38 for −Z corresponds to the
entry point of the right and left tail standardized distributions. Applying
the return transformation from the standardized returns into equivalent raw
returns will give us virtual location entry points for the left and right tails.

9The same approach applied directly on raw returns gives for the right tail a threshold
of +1.07% (upper order statistics of 1406) and for the left tail a threshold of -3.95% (upper
order statistics of 71). Results provided upon request.
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Indeed, the threshold for the right tail becomes +1.28% (upper order statis-
tics of 1,013) and for the left tail becomes -1.92% (upper order statistics of
444). This means approximately that beyond +1.5% and below -2.0%, the
French CAC 40 stock index enters into tail areas. This threshold selection
is required for the GPD estimation. Table 3 displays the results for the
GPD when considering the optimal threshold values. The maximum like-
lihood estimators of the GPD are the values of the two parameters (ξ̂, σ̂)
that maximize the log-likelihood. The tail index value of +0.1439 for −Z is
statistically significant, in contrast to that of +Z. The positive sign confirms
the presence of fat-tailedness for the lower tail. Indeed, the larger the tail
index, the more fat-tailed the distribution. This tail index value indicates
that the CAC 40 standardized returns stem from a distribution with finite
variance, skewness, and kurtosis. The upper tail has a tail index close to zero,
indicating moderate tail behavior belonging to the Gumbel-type domain of
attraction. These results are fully consistent with the Q-Q plots of Figure
4. The scale parameters of +Z and −Z are statistically significant and with
the same dispersion.

4.3 Crash event identification

The Table 4a reveals that the 1981-05-13 event is the biggest crash of the
sample with a standardized return of -11.66%. It is consistent with results
reported in Table 4b. The next day, the volatility reaches its highest level ever
at 95%. The contagion effect remains relatively high despites its domestic
origin. The 1991-08-19 event is the second biggest crash of the sample. They
can be visually identified in Figure 1 (lower right corner); the second crash
does not appear in the raw returns graph (lower left corner); this means
that relying on raw returns to identify crashes turns out to be misleading;
these two first order crashes correspond to a natural cut-off; in addition, they
both have a political connotation. The 1989-10-16 event is the third biggest
crash of the sample. These two events do not appear in table 4b because
their impact is relatively limited in time. The 2007-02-27 event is the eighth
biggest crash for which the correlation with the U.S. market is the highest
of the sample; this date marks the beginning of the subprime crisis. The
2008-01-21 event is the tenth biggest crash; the U.S. market was closed at
that date. These two dates are the only crash events from the recent banking
crisis. In fact, most of the extreme returns that occurred in 2007 and 2008
are due to a high regime of volatility. Indeed, the CAC 40 implied (historical)
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volatility is about 31.44% (35.40%) in 2008 versus 19.43% (17.13%) in 2007
and 22.67% (20.55%) from 2000 to 2007; actually, 2008 is the most volatile
year of the sample. As a consequence, this 2008 financial year appears to be
more volatile than extreme. For instance, Table 4a gives an example of the
over-representation of year 2008 in terms of lowest raw returns and highest
volatilities. Precisely, 21 (50) out of the 100 lowest raw returns (highest
volatilities) of the sample belong to year 2008. The 2001-09-11 event is the
eleventh biggest crash; the U.S. market was closed at that date. The 1987-
05-15 event is the twelfth biggest crash; this date corresponds to a percursor
of the 19 October 1987. The remaining negative standardized returns have
very low contagion effect (rank > 100); as a consequence, we can limit the
number of crashes as 12 among 755 negative tail events.

4.4 Tail event forecasting

Table 5 displays some tail-related risk measures, such as the value at risk
and expected shortfall measures, for both Gaussian and General Pareto dis-
tributions. Probability levels of 99%, 99.5%, 99.9%, 99.95% and 99.99%
are considered. The distance between the GPD and Gaussian measures in-
creases with the level of probability. The conservative choice of the 0.9999
probability level corresponds to a worst possible movement in 10,000 days,
or approximately 40 years. The reported 0.01%-GPD-VaR is -6.94% and the
0.01%-GPD-ES is -8.46%. This corresponds to transformed returns of -7.78%
for the 0.01%-GPD-VaR and -9.39% for the 0.01%-GPD-ES. It means that
the prediction at the 99.99% level cannot predict the magnitude of the two
lowest standardized returns. Both of them have a political connotation (see
Table 4a). Figure 6 is the associated tail plot in log-log scale. Table 6 dis-
plays the return levels for both positive and negative standardized residuals
with confidence intervals. We note, unsurprisingly, that the return levels for
negative returns are higher in comparison to the positive ones; it confirms
the asymmetric nature of the distribution. Figure 5 shows the associated
plots. The return level plot consists of plotting the theoretical quantiles as a
function of the return period with a logarithmic scale for the x-axis. It shows
the profile log-likelihood curve of the 100-year return level with the 95%
confidence intervals. It corresponds to a -8.21% standardized return with
an asymmetric confidence interval. The 95% confidence interval is obtained
from the profile of log-likelihood as [-9.98%, -6.44%]. This corresponds to an
equivalent raw return of -9.13% with a 95% confidence interval of [-10.99%,
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-7.26%]. The level expected to be exceeded once every century is therefore
-9.13%; its lower bound is -10.99%.

4.5 Result summary

1) The tail area begins from +1.5% for the right tail and -2.0% for the left
tail.
2) The CAC 40 stock returns distribution has an asymmetric nature: left
tail distribution has a General Pareto form and right tail distribution is ex-
ponential.
3) Tail-related risk measures, such as the value at risk and expected short-
fall based on a General Pareto distribution, can capture the magnitude of
the 2007-2008 extreme events at the 0.01% associated probability level. The
0.01%-GPD-VaR level is -7.78% and the 0.01%-GPD-ES is -9.39%. In addi-
tion, the theoretical daily loss, which should be exceeded in one year every
century, is -10.99%.
4) Over the 40-year period, 12 crashes are identified (2 in 2007-2008) in com-
parison with 755 negative tail events; in addition, the 2007-02-27 marks the
beginning of the subprime crisis.
5) The magnitude of the recent banking crisis is very important in terms
of raw returns because the French market experienced its highest level of
volatility in 2008.

5 Conclusion
The goal of this article is to disentangle crashes from negative extreme re-
turns with a risk management stand point. The modus operandi is based
on an augmented extreme value theory approach. An application to the
French stock market is provided using the longest daily time series ever used
(1968-2008). The general contribution is to test a definition of stock market
crashes that is risk management-oriented, while the empirical contributions
are three-fold:
First, an econometric specification is proposed for the French data over the
40-year period. From 50 possible candidates, the ARMA(2,4)-TGARCH(1,1)
structure appears to offer the best fit for explaining the return-generating
process over the long run.
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Second, both visual inspection techniques and recent automated threshold
selection procedures are applied to identify the tail region of the standardized
returns. This represents one of the most complete approaches for threshold
selection.
Third, a return transformation method for converting standardized returns
into equivalent raw returns is developed; it is based on a quantile regression
technique, in order to offer economic interpretation of the empirical results.
Finally, the policy-oriented conclusion is that the identification of the crash
event of 2007 (2007-02-27) might have justify the bailout plan of Lehman
Brothers and avoid the crisis spread.
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Figure 1: CAC 40 stock index

Figure 1 displays graphics from CAC 40 stock index from September, 30th 1968 to De-
cember 31st 2008. From upper left to lower right corner: CAC 40 stock index prices,
TGARCH volatility, raw returns and standardized returns.

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

CAC 40 Stock Index

Date

In
de

x

1970 1980 1990 2000 2010

0
20

40
60

80

CAC 40 Stock Index

Date

V
ol

at
ili

ty

1970 1980 1990 2000 2010

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10

CAC 40 Stock Index

Date

R
aw

 r
et

ur
ns

1970 1980 1990 2000 2010

−
10

−
5

0
5

CAC 40 Stock Index

Date

S
ta

nd
ar

di
ze

d 
re

tu
rn

s

1970 1980 1990 2000 2010



Figure 2: Mean residual life plot

Figure 2 displays the mean excess function plot of the upper (+Z) and lower tail (−Z) of
the CAC 40 stock index standardized returns. The mean residual life plot is flat for the
exponential distribution. When the plot is approximately linear with positively sloped, it
indicates Pareto behavior in the tail. This plot is used to select an appropriate threshold
value.
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Figure 3: Stability plot

Figure 3 displays thresholds plots for the upper tail (+Z) and lower tail (−Z) of the CAC
40 stock index standardized returns. The maximum likelihood estimates for the tail index
ξ are plotted against a range of thresholds with 95% confidence limits. The stability in the
parameter estimates can be checked. The plot is used to select an appropriate threshold
for which the parameter estimates are approximately constant above the threshold range.
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Figure 4: Quantile-Quantile plot

Figure 4 displays the QQ-plot of the upper (+Z) and lower tail (−Z) of the CAC 40
stock index standardized returns. The QQ-plot compares the observed quantiles with the
theoretical ones. If the standardized returns follow an exponential distribution then we
should observe a linear trend. We note a strong concave departure in the QQ-plots that
is a sign of the presence of heavy tails.
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Figure 5: Return level plot

Figure 5 displays two return level plots for the lower tail (−Z) of the CAC 40 stock index
standardized returns. The plot in the left hand side is based on the computation of the
1, 2, 5, 10, 20, 50 and 100-year return levels for the fitted GPD with 95% confidence
intervals computed by the delta method. The plot in the right hand side shows the profile
log-likelihood curve of the 100-year return level with the 95% confidence intervals located
in the points of intersection. In contrast with the delta method, the confidence intervals are
asymmetric about the maximum likelihood estimate. More precisely, the profile likelihood
interval is shifted to the right showing an asymmetry with the increasing return level since
the data provide weaker information on high levels.
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Figure 6: Tail plot

Figure 6 displays the CAC 40 stock index standardized negative returns (−Z). The tail
plot is based on a generalized Pareto model fitted to losses over the −Z-threshold. The
estimated model is plotted as a solid line while the actual daily −Z above the threshold
are shown in circles. The left y-axis indicates the tail probabilities 1−F (x) and the lower
x-axis indicates the −Z values (in logarithmic scale). The vertical three lines (from left to
right) locate the 0.99th, 0.995th, 0.999th and 0.9999th Expected Shortfall level.
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Table 1: Descriptive statistics

Table 1 presents the descriptive statistics of the CAC 40 stock index standardized daily
log-returns (Z) from September, 30th 1968 to December 31st 2008. The filtered model is
an ARMA(2,4)-TGARCH(1,1).

Z Z
Mean −0.0011 Q10 (residual) 8.8759

(p− value) (0.114)
Median −0.0015 Q10 (squared residual) 3.0381

(p− value) (0.694)
Maximum 8.5990 Q20 (residual) 17.046

(p− value) (0.316)
Minimum −11.6598 Q20 (squared residual) 12.034

(p− value) (0.676)
Std.Dev. 0.9999 EngleLM(1) 0.5133

(Probability) (0.4737)
Skewness −0.4068∗∗∗ EngleLM(2) 0.6564

(z− statistic, p− value) (−10.5515, 2.2e− 16) (Probability) (0.7202)
Kurtosis 8.0388∗∗∗ µ 0.00026∗∗

(z− statistic, p− value) (29.7265, 2.2e− 16) (z− statistic) (2.4299)
Jarque− Bera 10869.99∗∗∗ φ1 0.1691∗∗∗

(p− value) (0.0000) (z− statistic) (15.2579)
q1% −2.4432 φ2 0.6769∗∗∗

(z− statistic) (6.9853)
q5% −1.6230 θ1 NA

(z− statistic)
q95% 1.5603 θ2 −0.7311∗∗∗

(z− statistic) (−7.5155)
q99% 2.3612 θ3 −0.1210∗∗∗

(z− statistic) (−6.1262)
AR1 −0.001 θ4 0.0491∗∗∗

(z− statistic) (4.2774)
AR2 0.008 ω 1.96e− 06∗∗∗

(z− statistic) (8.2497)
AR3 −0.008 α 0.0737∗∗∗

(z− statistic) (4.7794)
AR4 0.013 β 0.8790∗∗∗

(z− statistic) (90.7266)
AR5 −0.001 γ 0.0771∗∗∗

(z− statistic) (3.8216)
AR6 −0.010 Log − likelihood 31987.06

Q6 (residual) 3.9322∗∗ Akaike criterion −6.3864
(p− value) (0.047)

Q6 (squared residual) 2.0451 Number 10014
(p− value) (0.153)

*, ** and*** denotes parameter statistically significant at the 90%, 95% and 99% confidence level.
q1%, q5%, q95% and q99% represent the empirical quantile measures at respectively 1%, 5%, 95% and 99%.



Table 2: Threshold choice

Table 2 presents the results of the threshold detection for the upper (+Z) and lower (−Z)
tail of the CAC 40 stock index standardized returns. Mean Excess Function plot is the
first visual inspection where selection is made around linear region. Stability plot is the
second visual inspection method where selection is made around stability region. The given
intervals denote the range of acceptable threshold. Visual guidance denotes a plausible
threshold choice. The optimal selection method is an automated method consisting in
minimizing asymptotic mean squared error.

+Z −Z
MEF plot 1 −1.5

Stability plot [1; 2] [−0.5;−1.5]
QQ plot 2.5 −1.5

Optimal selection 0.9547 −1.3811

Table 3: Parameters estimates for the GPD model

Table 3 gives parameter estimates of the General Pareto distribution fitted to the upper
(+Z) and lower tails (−Z) of the CAC 40 stock index standardized returns. The gen-
eralized Pareto distribution is fitted to excesses over the selected threshold. The vector
parameters are estimated by the maximum likelihood method. Nb. Exceedances corre-
sponds to the number of observations in the tail. Percentile is the percentage of observa-
tions below the threshold. Neg. Lik is the negative logarithm of the likelihood evaluated
at the maximum likelihood estimates.

+Z −Z
ξ −0.00055 0.14397∗∗∗

(s.e) (0.0195) (0.0345)
σ 0.5403∗∗∗ 0.5015∗∗∗

(s.e) (0.0174) (0.0250)
Threshold 0.9547 −1.3811

Nb.Exceedances 1522 755
Percentile 0.8480 0.9246
Neg.Lik. 584.326 342.7594

*** denotes parameter significantly different from zero
at the 99% confidence level.
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Table 4b
Date LB (1) Date LB(2) Date GH−A
May1981 −32.79% May1981 −4.48% November1987 −18.36%
October1987 −25% October1987 −3.49% June1981 −14.37%
May1986 −18.56% September1998 −3.23% October1987 −14.02%
September1998 −17.66% May1986 −2.89% May1981 −12.96%
July2002 −15.99% November1973 −2.85% August1990 −12.79%
October2008 −14.99% October2008 −2.79%
September2002 −14.81%
november1973 −14.31%
August1990 −13.39%
June1974 −12.82%

Table 5: Estimated risk measures

Table 5 gives for each probability level of 0.99, 0.995, 0.999, 0.9995, 0.9999 the VaR and
the associated Expected Shortfall estimates based on a (i) GPD model fitted to the CAC
40 stock index negative standardized returns (−Z) and a (ii) normal distribution.

Probability VaR−GPD ES−GPD VaR− normal ES− normal
0.9900 −2.5570 −3.3408 −2.3263 −2.6652
0.9950 −3.0461 −3.9120 −2.5758 −2.8919
0.9990 −4.3886 −5.4804 −3.0902 −3.3670
0.9995 −5.0699 −6.2762 −3.2905 −3.5543
0.9999 −6.9402 −8.4611 −3.7190 −3.9584

Table 6: Estimated return levels

Table 6 displays the results of the return levels for 1, 2, 5, 10, 20, 50 and 100 years. This
table displays the result of the fit of the upper tail (+Z) and lower tail (−Z) of the CAC
40 stock index standardized returns. 2x2 columns represent upper and lower bound with
95% confidence interval.

Period +Z Lower bound Upper bound −Z Lower bound Upper bound
1 2.9182 2.7994 3.0371 −3.2143 −3.0316 −3.3970
2 3.2920 3.1330 3.4510 −3.7722 −3.4975 −4.0470
5 3.7859 3.5582 4.0135 −4.6006 −4.1431 −5.0581
10 4.1593 3.8677 4.4509 −5.3039 −4.6522 −5.9557
20 4.5326 4.1669 4.8983 −6.0811 −5.1776 −6.9846
50 5.0259 4.5466 5.5052 −7.2348 −5.8935 −8.5762
100 5.3989 4.8219 5.9758 −8.2145 −6.4479 −9.9811


