
Information, Liquidity, and

Dynamic Limit Order Markets∗
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The aggregation of private information and the dynamics of liquidity supply and demand are

closely intertwined in financial markets. In dealer markets, informed and uninformed investors

trade via market orders and, thus, take liquidity, while dealers provide liquidity and try to extract

information from the arriving order flow (e.g., as in Kyle (1985) and Glosten and Milgrom (1985)).

However, in limit order markets — the dominant form of securities market organization today

— the relation between who has information and who is trying to learn it and who supplies and

demands liquidity is not well understood theoretically.1 Recent empirical research highlights the

role of informed traders not only as liquidity takers but also as liquidity suppliers. O’Hara (2015)

argues that fast informed traders use market and limit orders interchangeably and often prefer limit

orders to marketable orders. Fleming, Mizrach, and Nguyen (2017) and Brogaard, Hendershott,

and Riordan (2016) find that limit orders play a significant empirical role in price discovery.2

Our paper presents the first rational expectations model of a dynamic limit order market with

asymmetric information and history-dependent Bayesian learning. In particular, learning is not

constrained to be Markovian in the limit order book. The model represents a trading day with

market opening and closing effects. Our model lets us investigate the information content of different

types of market and limit orders, the dynamics of who provides and demands liquidity, and the

non-Markovian information content of the order history. In addition, we study how changes in the

amount of adverse selection — in terms of both asset-value volatility and the arrival probability of

informed investors — affect equilibrium trading strategies, liquidity, price discovery, and welfare.

We have four main results:

• Increased adverse selection does not always worsen market liquidity as in Kyle (1985). Li-

quidity can improve if informed traders with better information trade more aggressively by

submitting more limit-orders at the inside quotes rather than by using market orders.

1See Jain (2005) about the prevalence of limit order markets. See Parlour and Seppi (2008) for a survey of
theoretical models of limit order markets. See Rindi (2008) and Boulatov and George (2013) for models of informed
traders as liquidity providers.

2Gencay, Mahmoodzadeh, Rojcek, and Tseng (2016) investigate brief episodes of high-intensity/extreme behavior
of quotation process in the U.S. equity market (bursts in liquidity provision that happen several hundreds of time a
day for actively traded stocks) and find that limit orders during these bursts significantly impact prices.
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• The information content of arriving orders can be opposite both order direction and aggress-

iveness. These patterns happen in markets in which value-shock volatility is small relative to

the price grid, and when informed investors have private value shocks as well as information.

• The learning dynamics are non-Markovian in that the order history has information in addi-

tion to the current state of the limit order book.3 In particular, the incremental information

content of arriving limit and market orders is history-dependent.

• The conditional price impact of given individual market and limit orders can vary depending

on time, the current standing limit order book, and the prior order history.

Dynamic limit order markets with uninformed investors are studied in a large literature. This

includes Foucault (1999), Parlour (1998), Foucault, Kadan, and Kandel (2005), Goettler, Parlour,

and Rajan (2005) and Roşu (2009). There is some previous theoretical research that allows informed

traders to supply liquidity. Kumar and Seppi (1994) is a static model in which optimizing informed

and uninformed investors use profiles of multiple limit and market orders to trade. Kaniel and

Liu (2006) extend the Glosten and Milgrom (1985) dealership market to allow informed traders

to post limit orders. Aı̈t-Sahalia and Saglam (2013) also allow informed traders to post limit

orders, but they do not allow them to choose between limit and market orders. Moreover, the

limit orders posted by their informed traders are always at the best bid and ask prices. Goettler,

Parlour, and Rajan (2009) allow informed and uninformed traders to post limit or market orders,

but their model is stationary and assumes Markovian learning. Roşu (2016b) studies a steady-

state limit order market equilibrium in continuous-time also assuming Markovian learning with

some additional information-processing restrictions. These last two papers are closest to ours. Our

model differs from them in two ways: First, they assume Markovian learning in order to study

dynamic trading strategies with order cancellation, whereas we simplify the strategy space (by

not allowing dynamic order cancellations and submissions) in order to investigate non-Markovian

3To be clear about terminology, we say a stochastic process followed by a set of variables x is non-Markovian
if the conditional probability distributions f [xs|xt, xt−1, . . .] and f [xs|xt] are different for some times t and s > t.
If a summary function g(xt−1, . . .) exists such that f [(xs, g(xs−1, . . .))| (xt, g(xt−1, . . .)), (xt−1, g(xt−2, . . .)), . . .] =
f [(xs, g(xs−1, . . .))|(xt, g(xt−1, . . .)], then we say the augmented process (x, g) is Markovian but not that the unaug-
mented process x is Markovian.
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learning (i.e., our model has a larger state space with full order histories). Second, we model a non-

stationary trading day with opening and closing effects. Market opens and closes are important daily

events in the dynamics of liquidity in financial markets. Bloomfield, O’Hara, and Saar (2005) show

in an experimental market analysis that informed traders sometimes provide more liquidity than

uninformed traders. Our model provides equilibrium examples of liquidity provision by informed

investors.

A growing literature investigates the relation between information and trading speed (e.g., Biais,

Foucault, and Moinas (2015); Foucault, Hombert, and Roşu (2016); and Roşu (2016a)). However,

these models assume Kyle or Glosten-Milgrom market structures and, thus, cannot consider the

roles of informed and uninformed traders as endogenous liquidity providers and demanders. We

argue that understanding price discovery dynamics in limit order markets is an essential precursor

to understanding speedbumps and cross-market competition given the real-world prevalence of limit

order markets.

1 Model

We consider a limit order market in which a risky asset is traded atN discrete times tj ∈ {t1, . . . , tN}

over a trading day. The fundamental value of the asset at the end of the day after time tN is

ṽ = v0 + ∆ =


v̄ = v0 + δ with Pr(v̄) = 1

3

v0 with Pr(v0) = 1
3

v
¯

= v0 − δ with Pr(v
¯
) = 1

3

(1)

where v0 is the ex ante expected asset value, and ∆ is a symmetrically distributed value shock. The

limit order market allows for trading through two types of orders: Limit orders are price-contingent

orders that are collected in a limit order book. Market orders are executed immediately at the best

available price in the limit order book. The limit order book has a price grid with four prices,

Pi ∈ {A2, A1, B1, B2}, two each on the ask and bid sides of the market. The tick size is equal to

κ > 0, and the ask prices are A1 = v0 + κ
2 , A2 = v0 + 1.5κ, and, by symmetry, the bid prices are
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B1 = v0 − κ
2 , B2 = v0 − 1.5κ. For simplicity, we normalize the tick size to κ = 1.

Order execution follows time and price priority. Thus, at each time tj , seven possible actions

xtj are available to investors: One possibility is to submit a market order MBAitj or MSBitj to

buy or sell immediately at the best available ask Aitj or bid Bitj (indexed by itj ) in the limit order

book at time tj . A subscript itj = 1 indicates that the best standing quote at time tj is at an inside

price A1 or B1, and itj = 2 means the best quote is at an outside price A2 or B2. Alternatively, the

investor can submit one of four possible limit orders LBBi and LSAi to buy or sell at the different

prices on the ask or bid side of the book. A subscript i = 1 denotes an aggressive limit order posted

at the inside quote, and i = 2 is a less aggressive limit order at the outside quotes.4 Yet another

alternative is to do nothing (NT ).

Two types of investors trade in the market. The first are a sequence of arriving active traders

with potential gains-from-trade due to private information and/or random private values. One

active investor arrives at each time tj . They are risk-neutral and asymmetrically informed. The

active investor arriving at time tj is informed with probability α and uninformed with probability

1 − α. Informed investors know the realized value shock ∆ perfectly. A generic informed investor

is denoted as I. When we want to make explicit the specific information known by the informed

investor, then we denote the informed investor as Iv̄ if the value shock is positive (∆ = δ), as Iv
¯

if

the shock is negative (∆ = −δ), and as Iv0 if the shock is zero (∆ = 0). Informed investors arriving

at different times during the day all have the identical asset-value information (i.e., there is only one

realized ∆). Uninformed investors do not know ∆, so they use Bayes’ Rule and their knowledge of

the equilibrium to learn about ∆ from the observable order history over time. Uninformed investors

are denoted as U .

An investor arriving at time tj may also have an additive random personal private-value trading

motive βtj . Non-informational private-value motives include preference shocks, hedging needs, and

taxation. The absence of a non-informational trading motive would lead to the Milgrom and Stokey

(1982) no-trade result. In our analysis, the factor βtj at time tj is drawn from a truncated-Normal

distribution, Tr[N (µ, σ2)], with support over the interval [−10, 10], which corresponds to private

4For tractability, it is assumed investors cannot post buy limit orders at A1 and sell limit orders at B1. This is
one way in which the investor action space is simplified in our model.
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valuations of up to plus or minus 10 ticks. The mean, µ = 0, is a neutral private factor. The

parameter σ determines the dispersion of an investor’s private-value factor βtj , as shown in Figure

1, and, thus, the probability of large private gains-from-trade due to extreme private valuations.

The sequence of arriving active investors is independently and identically distributed in terms of

whether investors are informed or uninformed and in terms of their individual private-value factors

βtj . In one specification of our model, only uninformed investors have private valuations, while in

a second richer specification both informed and uninformed investors have private valuations.

Figure 1: Distribution of Investor Private-Value Factors - β ∼ Tr[N (µ, σ2)]. This figure
shows the truncated-Normal probability density function (PDF) of trader private-value factors βtj with a mean µ = 0
and three different possible values of dispersion σ.
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The second type of investors in the market are a group of passive liquidity providers with no

active motive to trade. These investors, who we call the trading crowd, submit limit orders to

provide liquidity. By assumption, the crowd just posts single limit orders at the outside prices

A2 and B2. In particular, given a parametric assumption δ ≤ 1.5, the crowd is always willing to

provide liquidity to anyone who wants to take liquidity at the outside prices. The market opens

with an initial book submitted by the crowd at time t0. After the order-submission by the arriving

active investor at each time tj , the crowd replenishes the book at the outside prices, as needed,

when either side of the book is empty. Otherwise, if there are limit orders on both sides of the book,

the crowd does nothing. The trading crowd effectively establishes a lower bound on the liquidity
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available in the market.5 Including liquidity from a crowd seems reasonable for a model of a limit

order market since, given our parametric restriction, it only involves “zero intelliqnce” behavior in

the sense that it does not require any optimization or belief updating by the crowd. Excluding

such liquidity would, therefore, make the book unreasonably thin. The goal of our model is then to

understand the dynamics of active liquidity provision and taking within this minimal background

level of passive liquidity in the market

For tractability, we make four additional simplifying assumptions. First, limit orders cannot

be modified or canceled after submission. Thus, each arriving investor has one and only one

opportunity to submit an order. Second, there is no quantity decision. Orders are to buy or

sell one share. Third, arriving active investors can only submit one single order. Fourth, limit

orders by the active investors have priority over limit orders from the crowd. The focus of our

model is on market dynamics involving information and liquidity given the behavior of optimizing

informed and uninformed investors. We justify this departure from time priority relative to the

crowd in that we want arriving active investors to have a non-trivial choice between aggressive and

less aggressive limit orders (as well as between market and limit orders) and because the crowd is

simply a modeling device to insure it is always possible for arriving active investors to trade with

market orders if they so choose.6 Taken together, these assumptions let us express the action set for

arriving active investors at time tj as Xtj = {MSBitj , LSA1, LSA2, NT, LBB2, LBB1,MBAitj },

where each of the orders denotes an order for one share.7

Our model is intentionally non-stationary over the trading day in order to capture market

opening and closing effects and intraday dynamics. When the market opens at t1, the only standing

limit orders in the book are those at prices A2 and B2 from the trading crowd.8 At the end of the

5The trading crowd can be endogenized as HFT investors in a Budish, Cramton, and Shim (2015) style model
with picking-off risk due to immediate public intraday shocks to v0 that is in addition to the terminal shock ∆ that
is private information during the day.

6In a richer model, we could assume the crowd submits limit orders at prices three ticks from the unconditional
common value v0 and that their limit orders also have time priority.

7The action space Xtj of orders that can be submitted at time tj includes market orders at the standing best bid
or offer at time tj . Our notation MSBitj

and MBAitj
reflects the fact that the bid or offer at time tj is not a fixed

number but rather depends on the incoming state of the limit order book. There is no time script in the limit order
notation LSA1, ... because these are just limit orders at particular fixed prices A1, . . . in the price grid.

8In practice, daily opening limit order books include uncancelled orders from the previous day and new limit
orders from opening auctions. For simplicity, we abstract from these interesting features of markets.
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day all unexecuted limit orders are cancelled. The state of the limit order book at a generic time

tj during the day is

Ltj = [qA2
tj
, qA1
tj
, qB1
tj
, qB2
tj

] (2)

where qAi
tj

and qBi
tj

indicate the total depths at prices Ai and Bi at time tj . The limit order book

changes over time due to the arrival of new limit orders (which augment the depth of the book)

and market orders (which remove depth from the book) from arriving informed and uninformed

investors and due to the submission of limit orders from the crowd. The resulting dynamics are:

Ltj = Ltj−1 +Qtj + Ctj j = 1, . . . , N (3)

where Qtj is the change in the book due to an arriving investor’s action xtj ∈ Xtj at tj :
9

Qtj = [QA2
tj
, QA1

tj
, QB1

tj
, QB2

tj
] =



[−1, 0, 0, 0] if xtj = MBA2

[0,−1, 0, 0] if xtj = MBA1

[+1, 0, 0, 0] if xtj = LSA2

[0,+1, 0, 0] if xtj = LSA1

[0, 0, 0, 0] if xtj = NT

[0, 0,+1, 0] if xtj = LBB1

[0, 0, 0,+1] if xtj = LBB2

[0, 0,−1, 0] if xtj = MSB1

[0, 0, 0,−1] if xtj = MSB2

(4)

where “+1” with a limit order denotes the arrival of an additional order at a particular limit price

and “−1” with a market order denotes execution of an earlier BBO limit order and where Ctj is

9There are nine alternatives in (4) because we allow separately for cases in which the best bid and ask for market
sells and buys at time tj are at the inside and outside quotes.
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the change in the limit order book due to any limit orders submitted by the crowd

Ctj =


[1, 0, 0, 0] if qA2

tj−1
+QA2

tj
= 0

[0, 0, 0, 1] if qB2
tj−1

+QB2
tj

= 0.

[0, 0, 0, 0] otherwise.

(5)

A potentially important source of information at time tj is the observed history of orders at prior

times t1, .., tj−1. In particular, when traders arrive in the market, they observe the history of market

activity up through the current standing limit order book at the time they arrive. However, since

orders from the crowd have no incremental information beyond that in the arriving investor orders,

we exclude them from the notation for the portion of the order-flow history used for informational

updating of investor beliefs, which we denote by Ltj−1 = {Qt1 , . . . , Qtj−1}.

Investors trade using optimal order-submission strategies given their information and any private-

value motive. If an uninformed investor arrives at time tj , then his order xtj is chosen to maximize

his expected terminal payoff

max
x∈Xtj

wU (x |βtj ,Ltj−1) = E[(v0 + ∆ + βtj − p(x)) f(x)|βtj ,Ltj−1 ] (6)

=

 [v0 + E[∆ |Ltj−1 , θ
x
tj ] + βtj − p(x)]Pr(θxtj |Ltj−1) if x is a buy order

[p(x)− (v0 + E[∆ |Ltj−1 , θ
x
tj ] + βtj )]Pr(θ

x
tj |Ltj−1) if x is a sell order

where p(x) is the price at which order x trades, and f(x) denotes the amount of the submitted order

that is actually “filled.” If x is a market order, then p(x) is the best standing quote on the other side

of the market at time tj , and f(x) = 1 for a market buy and f(x) = −1 for a market sell (i.e., all of

the order is executed). If x is a non-marketable limit order, then the execution price p(x) is its limit

price, but the fill amount f(x) is random variable equal to zero if the limit order is never executed

and equal to 1 if a limit buy is filled and −1 if a limit sell is filled. If the investor does not trade

— either because no order is submitted (NT ) or because a limit order is not filled — then f(x) is

zero. In the second line of (6), the expression θxtj denotes the set of future trading states in which
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an order x submitted at time tj is executed.10 This conditioning matters for limit orders because

the sequence of subsequent orders in the market, which may or may not result in the execution of

a limit order submitted at time tj , is correlated with the asset value shock ∆. For example, future

market buy orders are more likely if the ∆ shock is positive (since the average Iv investors will

want to buy but not the average Iv investor). Uninformed investors rationally take the relation

between future orders and ∆ into account when forming their expectation E[∆ |Ltj−1 , θ
x
tj ] of what

the asset will be worth in states in which their limit orders are executed. The second line of (6) also

makes clear that uninformed investors use the prior order history Ltj−1 in two ways: It affects their

beliefs about limit order execution probabilities Pr(θxtj |Ltj−1) and their execution-state-contingent

asset-value expectations E[∆ |Ltj−1 , θ
x
tj ].

An informed investor who arrives at tj chooses an order xtj to maximize her expected payoff

max
x∈Xtj

wI(x |v, βtj ,Ltj−1) = E[(v0 + ∆ + βtj − p(x)) f(x)|βtj ,Ltj−1 ] (7)

=

 [v0 + ∆ + βtj − p(x)]Pr(θxtj |v,Ltj−1) if x is a buy order

[p(x)− (v0 + ∆ + βtj )]Pr(θ
x
tj |v,Ltj−1) if x is a sell order

The only uncertainty for informed investors is about whether any limit orders they submit will be

executed. Their belief about order-execution probabilities Pr(θxtj | v,Ltj−1) are conditioned on both

the trading history up through the current book and on their knowledge about the ending asset

value. Thus, informed traders condition on Ltj−1 , not to learn about the value shock ∆ (which

they already know) or about future investor private-value factors βtj (which are i.i.d. over time),

but rather because they understand that the trading history is an input in the trading behavior

of future uninformed investors (with whom they might trade in the future) and, thus, also in the

trading behavior of future informed investors (against whom they compete and who will also take

history-contingent uninformed-investor learning behavior into account when deciding whether to

undercut earlier limit orders). Our analysis considers two model specifications for the informed

investors. In the first, informed investors have no private-value motive, so that their β factors are

10A market orders xtj is executed immediately at time tj and so is executed for sure.
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equal to 0. In the second specification, their β factors are random and are independently drawn

from the same truncated-Normal distribution Tr[N (µ, σ2)] as the uninformed investors.

The optimization problem in (6) defines sets of actions xtj ∈ Xtj that are optimal for the

uninformed investor at different times tj given different private-value factors βtj and order histories

Ltj−1 . These optimal orders can be unique, or there may be multiple orders which make the

uninformed investor equally well-off. The optimal order-submission strategy for the uninformed

investor is a probability function ϕUtj (x|βtj ,Ltj−1) that is zero if the order x is suboptimal and equals

a mixing probability over optimal orders. If an optimal order x is unique, then ϕtj (x|βtj ,Ltj−1) = 1.

Mixed strategies are also allowed. Similarly, the optimization problem in (7) leads to an optimal

order-submission strategy ϕItj (x|βtj , v,Ltj−1) for informed investors at time tj given their factor

βtj , their knowledge about the asset value v, and the order history Ltj−1 .

Based on the foregoing, our model has four sources of potential order-flow randomness. First,

orders are random due to the random arrival of informed vs uninformed investors. Second, they

are random due to the asset-value shock ∆. Third, orders are random due to randomness in

investors’ personal private values βtj . This is illustrated in Figure 2 for a numerical example of

our model that is considered in detail in Section 2.2 and Appendix A. The plot shows where the

order-submission probabilities come from for an informed investor Iv at time t1 by superimposing

the upper envelope of the expected payoffs for the different optimal orders at time t1 for the case

of good news about a positive value shock δ on the truncated Normal β distribution. It shows how

different β subranges correspond to a discrete set of optimal orders delimited by the β thresholds.

Similar constructions at other dates for informed investors and also for uninformed investors who

must update their asset-value beliefs using Bayes Rule. Fourth and lastly, orders are sometimes

random due to possible mixed strategies ϕUtj and ϕItj . However, this only happens when an investor

is indifferent between a set of orders.

To summarize, our model captures the following economic drivers of trading in a dynamic limit

order market with adverse selection: First, trading noise from the uninformed investors provides

camouflage for trading by the informed investors. Second, investors trade off gains from trading

immediacy and price improvement when deciding between submitting market and limit orders and
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in their choice of using more and less aggressive limit orders. Third, there is dynamic competition

between informed investor to trade on their common private information over time. Fourth, there

is competition between between informed and uninformed investors in liquidity provision

Figure 2: β Distribution and Upper Envelope for Informed Investor Iv̄ at time t1.
This figure shows the private-value factor β ∼ Tr[N (µ, σ2)] distribution superimposed on the plot of the expected
payoffs the informed investor Iv̄ with good news at time t1 for each equilibrium order type MBA2, MSB2, LSA2,
LSA1, LBB1, LBB2, NT , (solid colored lines) when the total book (including crowd limit orders) opens Lt0 = [1
0 0 1]. The dashed line shows the investor’s upper envelope for the optimal orders. The vertical black lines show
the β-thresholds at which two adjacent optimal strategies yield the same expected payoffs. For example LSA1 is the
optimal strategy for values of β between 0 and the first vertical black line; LSA2 is instead the optimal strategy for
the values of beta between the first and the second vertical lines; and so forth. The parameters are α = 0.8, δ = 1.4,
µ = 0, σ = 15, and κ = 1.

MBA2LBB1LBB2LSA2LSA1

-5 0 5 10
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1.1 Equilibrium

An equilibrium is a set of mutually consistent optimal strategy functions and beliefs for uninformed

and informed investors for each time tj , given each order history Ltj−1 , private-value factor βtj ,

and (for informed traders) private information v. This section explains what “mutually consistent”

means and then gives a formal definition of an equilibrium.
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A central feature of our model is asymmetric information. The presence of informed investors

means that, by observing orders over time, uninformed traders can infer information about the

asset value v and use it in their order-submission strategies. More precisely, uninformed traders

rationally learn from the trading history about the probability that v will go up, stay constant,

or go down. However, investors cannot learn about the private values (β) or information status

(I or U) of future traders since, by assumption, these are both i.i.d over time. Informed investors

do not need to learn about v since they know it directly. However, they do condition their orders

on v (both because v is the final stock value and also because v tells them what type of informed

investors Iv will arrive in the future along with the uninformed U traders). Informed investors

also condition on the order-flow history Lt−1, since Lt−1 affects the trading behavior of future

investors.11

The underlying economic state in our model is the realization of the asset value v and a realized

sequence of investors who arrive in the market. The investor who arrives at time tj is described

by two characteristics: their status as being informed or uninformed, I or U , and their private-

value factor βtj . The underlying economic state is exogenously chosen over time by Nature. More

formally, it follows an exogenous stochastic process described by the model parameters δ, α, µ,

and σ. A sequence of arriving investors together with a pair of strategy functions — which we

denote here as Φ = {ϕUtj (x|βtj ,Ltj−1), ϕItj (x|βtj , v,Ltj−1)} — induce a sequence of trading actions

xtj which — together with the predictable actions of the trading crowd — results in a sequence of

observable changes in the state Ltj of the limit order book. Thus, the stochastic process generating

paths of order histories is induced by the economic state process and the strategy functions. Given

the order-path process, several probabilistic quantities can be computed directly: First, we can

compute the unconditional probabilities of different paths Pr(Ltj ) and the conditional probabilities

Pr(Qtj |Ltj−1) of particular order book changes Qtj due to arriving investors given a prior history

Ltj−1 . Certain paths of orders are possible (i.e., have positive probability Pr(Ltj )) given the

strategy functions {ϕUtj (x|β,Ltj−1), ϕItj (x|β, v,Ltj−1)}, and certain paths of orders are not possible

11The order history Lt−1 is an input in the uninformed-investor learning problem and, thus, is an input in their
order-submission strategy. In addition, since future informed investors know that Lt−1 can affect uninformed investor
trading behavior, it also enters the order-submission strategies of future informed investors.
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(i.e., for which Pr(Ltj ) = 0). Second, the endogenous order-path process also determines the order-

execution probabilities Pr(θxtj | v,Ltj−1) and Pr(θxtj |Ltj−1) for informed and uninformed investors

for various orders x submitted at time tj . Computing each of these probabilities is simply a matter

of listing all of the possible underlying economic states, mechanically applying the order-submission

rules, identifying the relevant outcomes path-by-path, and then taking expectations across paths.

Let ` denote the set of all feasible histories {Ltj : j = 1, . . . , 4} of physically available orders

of lengths up to four trading periods. A four-period long history is the longest history a order-

submission strategy can depend on in our model. In this context, feasible paths are simply sequences

of actions from the action choice sets Xtj over time without regard to whether they are possible

in the sense that they occur with positive probability given the strategy functions Φ. Let ` in,Φ

denote the subset of all possible trading paths in ` that have positive probability, Pr(Ltj ) > 0,

given a pair of order strategies Φ. Let ` off,Φ denote the complementary set of trading paths that are

feasible but not possible given Φ. This notation will be useful when discussing “equilibrium” beliefs

on order paths that have positive probability and “off equilibrium” beliefs on paths that have zero

probability given investor strategies. In our analysis, the strategy functions Φ are defined for all

feasible paths in `. In particular, this includes all of the possible paths in ` in,Φ given Φ and also the

paths in ` off,Φ. As a result, the probabilities Pr(Qtj |Ltj−1), Pr(θxtj | v,Ltj−1) and Pr(θxtj |Ltj−1)

are always well-defined, because the continuation trading process going forward — even after an

unexpected order-arrival event (i.e., a path Ltj−1 ∈ ` off,Φ) — is still well-defined.

The stochastic process for order paths and its relation to the underlying economic state also

determine the uninformed-investor expectations E[v |Ltj−1 , θ
x
tj ] of the terminal asset value given

the previous order history (Ltj−1) and conditional on future execution of a limit order x submitted

at time tj (denoted here by the set of future states θxtj in which this happens). In particular, belief

and expectation formation for the uninformed investor involve backward conditioning on the prior

order history Ltj−1 and forward conditioning on the endogenous set of future states θxtj in which

limit orders are executed. These beliefs and expectations are determined as follows:

• Step 1: The conditional probabilities πvtj = Pr(v|Ltj ) of a particular final asset value v = v̄, v0

or v given a possible trading history Ltj ∈ ` in,Φ up through time tj is given by Bayes’ Rule.
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At time t1, this probability is

πvt1 =
Pr(v,Lt1)

Pr(Lt1)
=
Pr(Lt1 |v)Pr(v)

Pr(Lt1)
=
Pr(Qt1 |v)Pr(v)

Pr(Qt1)
(8)

=
Pr(Qt1 |v, I)Pr(I) + Pr(Qt1 |U)Pr(U)

Pr(Qt1)
Pr(v)

=
Eβ[ϕIt1(xt1 |βIt1 , v)|v]α+ Eβ[ϕUt1(xt1 |βUt1)](1− α)

Pr(Qt1)
πvt0

where the prior is the unconditional probability πvt0 = Pr(v), xt1 is the order at time t1 that

leads to the order book change Qt1 , and βIt1 and βUt1 are independently distributed private-

value β realizations for informed and uninformed investors at time t1.12 At times tj > t1, the

history-conditional probabilities are given recursively by13

πvtj =
Pr(v,Ltj )

Pr(Ltj )
=
Pr(v,Qtj ,Ltj−1)

Pr(Qtj ,Ltj−1)
=

 Pr(Qtj |v,Ltj−1 , I)Pr(I|Ltj−1)Pr(v|Ltj−1)

+Pr(Qtj |v,Ltj−1 , U)Pr(U |Ltj−1)Pr(v|Ltj−1)


Pr(Qtj |Ltj−1)

=
Eβ[ϕItj (xtj |β

I
tj , v,Ltj−1)|v,Ltj−1 ] α+ Eβ[ϕUtj (xtj |β

U
tj ,Ltj−1)|Ltj−1 ] (1− α)

Pr(Qtj |Ltj−1)
πvtj−1

(9)

Given these probabilities, the expected asset value conditional on the order history is

E[ṽ|Ltj−1 ] = πv̄tj−1
v̄ + πv0

tj−1
v0 + π

v
tj−1

v (10)

• Step 2: The conditional probabilities πvtj given a “feasible but not possible in equilibrium”

order history Ltj ∈ ` off,Φ in which a limit order book change Qtj that is inconsistent with

the strategies Φ at time tj are set as follows:

1. If the priors are fully revealing in that πvtj−1
= 1 for some v, then πvtj = πvtj−1

for all v.

2. If the priors are not fully revealing at time tj , then πvtj = 0 for any v for which πvtj−1
= 0

12A trader’s information status (I or U) is independent of the asset value v, so P (I|v) = Pr(I) and Pr(U |v) =
Pr(U). Furthermore, uninformed traders have no private information about v, so the probability Pr(Qt1 |U) with
which they take a trading action Qt1 does not depend on v.

13A trader’s information status is again independent of v, and it is also independent of the past trading history
Lt1 . While the probability with which an uninformed trader takes a trading action Qt1 may depend on the past
order history Ltj , it does not depend directly on v which uninformed traders do not know.
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and the probabilities πvtj for the remaining v’s can be any non-negative numbers such

that πv̄tj + πv0
tj

+ π
v
tj

= 1.

3. Thereafter, until any next unexpected trading event, the subsequent probabilities πvtj′

for j′ > j are updated according to Bayes’ Rule as in (9).

• Step 3: The execution-contingent conditional probabilities π̂vtj = Pr(v|Ltj−1 , θ
x
tj ) of a final

asset value v conditional on a prior path Ltj−1 and on execution of a limit order x submitted

at time tj is

π̂vtj =
Pr(Ltj−1)Pr(v|Ltj−1) Pr(θxtj−1

|v,Ltj−1)

Pr(θxtj ,Ltj−1)
(11)

=
Pr(θxtj |v,Ltj−1)

Pr(θxtj |Ltj−1)
πvtj−1

This holds when adjusting for a future execution contingency both when the probabilities

πvtj−1
given the prior history Ltj−1 are for possible paths in ` in,Φ (from (8) and (9) in Step 1)

and also for feasible but not possible paths in ` off,Φ (from Step 2). These execution-contingent

probabilities π̂vtj are used to compute the execution-contingent conditional expected value

E[ṽ|Ltj−1 , θ
x
tj ] = π̂v̄tj v̄ + π̂v0

tj
v0 + π̂

v
tj
v
¯

(12)

used by uninformed traders to compute expected payoffs for limit orders. In particular, the

probabilities in (12) are the execution-contingent probabilities π̂vtj from (11) rather than the

probabilities πvtj from (9) that just condition on the prior trading history but not on the future

states in which the limit order is executed.

Given these updating dynamics, we can now define an equilibrium.

Definition. A Perfect Bayesian Nash Equilibrium of the trading game in our model is a collec-

tion {ϕU, ∗tj
(x|βtj ,Ltj−1), ϕI, ∗tj (x|βtj , v,Ltj−1), P r∗(θxtj | v,Ltj−1), P r∗(θxtj |Ltj−1), E∗[ṽ|Ltj−1 , θ

x
tj ]}

N
j=1

of order-submission strategies, execution-probability functions, and execution-contingent condi-

tional expected asset-value functions such that:
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• The equilibrium execution probabilities Pr∗(θxtj | v,Ltj−1) and Pr∗(θxtj |Ltj−1) are consistent

with the equilibrium order-submission strategies {ϕU, ∗tj+1
(x|βtj+1 ,Ltj ), . . . , ϕ

U, ∗
t5

(x|βt5 ,Lt4)}

and {ϕI, ∗tj+1
(x|βtj+1 , v,Ltj ), . . . , ϕ

I, ∗
t5

(x|βt5 , v,Lt4)} after time tj .

• The execution-contingent conditional expected asset values E∗[ṽ|Ltj−1 , θ
x
tj ]} agree with Bayesian

updating equations (8), (9), (11), and (12) in Steps 1 and 3 when the order x is consistent with

the equilibrium strategies ϕU, ∗tj
(x|βtj ,Ltj−1) and ϕI, ∗tj (x|βtj , v,Ltj−1) at date tj and, when x is

an off-equilibrium action inconsistent with the equilibrium strategies, with the off-equilibrium

updating in Step 2.

• The positive-probability supports of the equilibrium strategy functions ϕU, ∗tj
(x|βtj ,Ltj−1) and

ϕI, ∗tj (x|βtj , v,Ltj−1) (i.e., the orders with positive probability in equilibrium) are subsets of

the sets of optimal orders for uninformed and informed investors computed from their op-

timization problems (6) and (7) and the equilibrium execution probabilities and outcome-

contingent conditional asset-value expectation functions Pr∗(θxtj | v,Ltj−1), Pr∗(θxtj |Ltj−1),

and E∗[ṽ|Ltj−1 , θ
x
tj ].

Our equilibrium concept differs from the Markov Perfect Bayesian Equilibrium used in Goettler

et al. (2009). Beliefs and strategies in our model are path-dependent; that is to say, traders use

Bayes Rule given the full prior order history when they arrive in the market. In contrast, Goettler

et al. (2009) restricts Bayesian updating to the current state of the limit order book and does not

allow for conditioning on the previous order history. Roşu (2016b) also assumes a Markov Perfect

Bayesian Equilibrium. The quantitative importance of the order history is considered when we

discuss our results in Section 2.

To help with intuition, Appendix A walks through the order-submission and Bayesian updating

mechanics for a particular realized equilibrium path in the extensive form of the trading game.

Appendix B explains the algorithm used to compute equilibria in our model.
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2 Results

This section presents results about how liquidity supply and demand decisions of informed and

uninformed traders and the learning process of uninformed traders affect market liquidity, price

discovery, and investor welfare. Section 2.1 first considers a model specification in which only

uninformed investors have random private-value trading motives. Section 2.2 considers a second

specification that generalizes the analysis and shows the robustness of our findings and extends them

when informed investors also have private-value motives. Throughout the numerical illustrations,

the number of trading rounds is N = 5, and the private-value dispersion σ is 15.

We focus on two time windows. The first is when the market opens at time t1. The second

is over the middle of the trading day from times t2 through t4. We look at these two windows

because our model is non-stationary over the trading day. Much like actual trading days, our

model has start-up effects at the beginning of the day and terminal horizon effects at the market

close. When the market opens at time t1, there are time-dependent incentives to provide, rather

than to take, liquidity: The opening book is thin (with limit orders only from the crowd), and

there is the maximum time for future investors to arrive to hit limit orders from t1. There are

also time-dependent disincentives for limit orders. Information asymmetries are maximal at time

t1, since there has been no learning through the trading process. Also, there is the maximal time

for early less aggressive limit orders (at A2 and B2) to be undercut by more aggressive later limit

orders (at A1 and B1). Over the day, information is revealed (lessening adverse selection costs), but

the book can also become fuller (i.e., there is competition in liquidity provision from earlier limit

orders with time priority), and the remaining time for market orders to arrive and execute limit

orders becomes shorter. Comparing these two time windows shows how market dynamics change

over the day. The market close at t5 is also important, but trading then is straightforward. At

the end of the day, investors only submit market orders (or do not trade), because the execution

probability for new limit orders at t5 is zero given our assumption that unfilled limit orders are

canceled once the market closes. Our choice of N = 5 trading rounds in a day is a compromise

between computational tractability and still allowing time for relatively less constrained endogenous

choices between market and limit orders at times t2 through t4 away from the immediate mechanical
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effects of the relatively thin book at the market open at t1 and the end-of-day market orders at t5.

We use our model to investigate three questions: First, who provides and takes liquidity, and

how does the amount of adverse selection affect investor decisions to take and provide liquidity?

Second, how does market liquidity vary with different amounts of adverse selection and different

types of competition? Third, how does the information content of different types of orders depend

on an order’s direction, aggressiveness, timing, and on the prior order history?

We present numerical comparative statics and other analyses for four different combinations

of parameters with high and low informed-investor arrival probabilities (α = 0.8 and 0.2) and

high and low value-shock volatilities (δ = 1.4 and 0.2). The value-shock volaility δ controls the

amount of adverse selection in the market: A large δ means that the private information of informed

investors is potentially large. We call markets with δ = 0.2 low-volatility markets and markets with

δ = 1.4 high-volatility markets because of the size of arriving information δ relative to the κ = 1

tick size. In high-volatility markets with δ = 1.4, the final asset value v given good or bad news

is inside the outside quotes A2 or B2. This has two implications: First, providing liquidity to

investors who want to trade at the outside quotes is always profitable for the crowd, even when the

market is fully revealing. Second, when informed-investor private-value relizations β are sufficiently

small (e.g., zero), informed investors in high-volatility markets will not use market orders to trade

at the outside quotes, but they will potentially use market orders to trade at the inside quotes

when there are limit orders posted at the inside quotes. In contrast, in low-volatility markets, v is

always within the inside quotes A1 and B1, and so market orders are never profitable for informed

investors with small (e.g., zero) private values β. A real-world example of a low-volatility trading

environment is a market for an individual stock where heteroskedastic fluctuation in the daily

volatility of arriving information can cause a market with a fixed one-penny tick size to switch over

time between being a high– and low–volatility market. Another example is that futures contracts

on different underlyings have customized underlying-specific price grids that can be large or small

relative to their underlying information flow.

The informed-investor arrival probability α has three effects. First, it controls the amount of

informational competition in the market: When α is large, the likelihood is higher than an arriving
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informed investor at time t will face competition both from other informed traders in the future with

the same private information (i.e., who might undercut outside limit orders posted at t) and also

from earlier informed investors (i.e., the incoming limit order book at time t will reflect the effects

of decisions of earlier informed investors to hit earlier limit orders providing attractive liquidity

and to post profitable limit orders of their own). Second, α affects the probability that uninformed

traders will face informed investors as counterparties when trading. Third, α has a mechanical

effect on the relative supply and demand for liquidity and, thus, on the probability of limit-order

execution. This is because when α is higher, it becomes less (more) likely that arriving investors

will be uninformed (neutrally informed) with large (zero) private-value gains-from-trade.

2.1 Uninformed traders with random private-value motives

In our first model specification, only uninformed U traders have random private values βtj . Informed

I traders have fixed neutral private-value factors βtj = 0. Thus, as in Kyle (1985), there is a clear

differentiation between investors who speculate on private information and those trading for purely

non-informational reasons. Unlike Kyle (1985), informed and uninformed investors here can choose

to trade using limit or market orders rather than being restricted to just market orders.

2.1.1 Trading strategies

Order-submission decisions are driven by different considerations for different investors. First,

directionally informed Iv̄ and Iv investors trade both to profit from their private information about

errors in the market’s current asset-value expectations and also to profit from providing liquidity

to uninformed investors. Second, informed Iv0 investors with neutral private information trade

solely to profit from liquidity provision to uninformed investors given their private knowledge that

the market’s ex ante asset-value expectations are correct. Lastly, uninformed investors U trade

to capture private-value gains-from-trade and to provide liquidity to other uninformed investors

but at the risk of trading adversely with informed investors. In addition to their personal trading

motives, investor order submissions also depend on the incoming limit order book they face when

they arrive in the market.
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We begin by investigating who supplies and takes liquidity and how these decisions change with

the amount of adverse selection and competition. Our starting point establishes from first principles

that adverse selection and the investor composition of the market affect investors’ trading decisions

differently.

Proposition 1 Trading strategies are affected differently by changes in adverse selection (controlled

by the asset-value shock size δ) vs. changes in the mix of informed and uninformed investors

(controlled by the informed-investor arrival probability α).

Proof: Consider first the effect of the value-shock δ on informed-investor order submissions given

any fixed α > 0. If the value-shock δ is sufficiently close to zero, then directionally informed Iv̄ and

Iv investors with good or bad news never use market orders, since the terminal asset value v is always

between the inside bid and ask prices A1 and B1 given a discrete tick size κ. However, once δ is

sufficiently large, investors with good and bad news start to use market orders for their guaranteed

execution. Thus, the set of orders used by directionally informed investors can change when δ

changes. This is true for all informed-investor arrival probabilities α > 0. In contrast, consider the

effect of the informed-investor arrival probability α on informed-investor order submissions given a

fixed δ > 0. If the value-shocks δ are close to zero, informed investors with good or bad news never

use market orders for any informed-investor arrival probability α. They are unwilling to pay a large

tick size to trade on their small information. Instead, they act as liquidity providers using limit

orders to supply liquidity asymmetrically depending on the direction of their information. Thus,

the set of orders used by directionally informed investors in low-volatility markets never changes

to include market orders when α changes.

Numerical results illustrate other facets of investor trading behavior. Table 1 reports results

about trading early in the day at time t1 using a 2×2 format. Each of the four cells corresponds to

a different combination of parameters. Comparing cells horizontally shows the effect of a change in

the value-shock size δ while holding the arrival probability α for informed traders fixed. Comparing

cells vertically shows the effect of a change in the informed-investor arrival probability while hold-

ing the value-shock size fixed. ** Note: This is currently not quite correct, since δ in the
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upper left cell is 1.6 rather than 1.4. We are working to update this parameterization.

** In each cell corresponding to a set of parameters, there are four columns reporting conditional

results for informed investors with good news, neutral news, and bad news about the asset (Iv, Iv0 ,

Iv) and for an uninformed investor (U) and a fifth column with the unconditional market results

(Uncond). The table reports the order-submission probabilities and several market-quality met-

rics. Specifically, we report expected bid-ask spreads conditioning on the three informed-investor

types E[Spread |Iv] and on the uninformed trader E[Spread |U ], the unconditional expected market

spread E[Spread], and expected depths at the inside prices (A1 and B1) and the total at both prices

(A1 + A2 and B1 +B2) on each side of the market. As we shall see, our results are symmetric for

the directionally informed investors Iv and Iv on the buy and sell sides of the market. In addition,

we report the probability-weighted contributions to the different investors’ welfare (i.e., expected

gains-from-trade) from limit and market orders respectively, and their total expected welfare.14

Table B1 in Appendix B provides additional results about execution probabilities for the different

orders (PEX(xt1)) and also the uninformed investor’s updated expected asset value E[v|xt1 ] given

different types of buy orders xt1 at time t1.

Table 2 shows average results for times t2 through t4 during the day using a similar 2×2 format.

The averages are across time. Comparing results for time t1 with the averages for t2 through t4

shows intraday variation in the trading process. There is no table for time t5, because only market

orders are used at the market close.

Consider first directionally informed investors Iv and Iv, One order-submission property that is

important for market-quality and order-informativenes results below is that directionally informed

investors tend to trade more aggressively in a high-volatility markets in which their private inform-

ation is large relative to the tick size. This is intuitive since larger potential payoffs make price

improvement less important relative to trade execution. This property can be seen in Table 1 where

at time t1 investors Iv̄ and Iv only post limit orders at the less-aggressive outsides quotes A2 and B2

in the two low-volatility parameterizations on the right (with δ = 0.2 and α = 0.2 or 0.8) but use

14LetWU (βt1) andW I(v, βt1) denote the value functions when (6) and (7) are evaluated at time t1 using the optimal
strategies for the uninformed and informed investors respectively. The total ex ante welfare gain is E[WU (βt1)] for
the uninformed investor where the expectation is taken over βt1 and E[W I(v, βt1)] for the informed investor where
the expectation is taken over v and βt1 .
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aggressive limit orders at the inside quotes A1 and B1 — either as a pure-strategy or in a mixed-

strategy also using limit orders at the outside quotes — in the two high-volatility parameterization

on the left (with δ = 1.6 or 1.4 and the same two respective αs). This trading-aggressiveness prop-

erty can also be seen in the average order-submission probabilities at times t2 through t4 in Table

2. In the low-volatility parameterizatons on the right, informed Iv̄ and Iv investors supply liquidity

via limit orders on both sides of the market with order-submission probabilities that are somewhat

skewed at the inside quote in the direction of their small amount of private information.15 Moving

to the high-volatility parameterizations on the left, we see that, when the informed-investor arrival

probability α is low (0.2), directionally informed investors increase the probability of using aggress-

ive limit orders at the inside prices and also start using market orders to trade in the direction

of their information. However, when the informed-investor arrival probability α is high (0.8), the

increased trading aggressiveness by informed investors in the high-volatility market takes a different

form. Informed Iv̄ and Iv investors reduce their use of most types of limit orders and increase their

use of market orders at times t2 through t4.

Next, consider the uninformed U investors. One obvious fact in the two tables is that, in these

parameterizations, uninformed-trader behavior at t1 changes more when α changes than when δ

changes. This is because uniformed traders, given their potentially large private-value gains-from-

trade, tend here to be more concerned about execution probability (controlled by α) than the

relatively small adverse selection costs even with δ = 1.4 or 1.6.

Lastly, consider the neutrally informed Iv0 investors. There are three points to note here. First,

neutrally informed investors use more inside limit orders at times t2 through t4 than directionally

informed traders in some parameterizations. This is consistent with the intuition of Bloomfield,

O’Hara and Saar (BOS 2005), who find in laboratory experiments that informed investors provide

liquidity via limit orders when mispricing is small in a market. However, the BOS effect does not

obtain in every parametrization. This is because there are multiple causal channels in play whose

relative strengths change across different parameterizations. Second, the use of inside limit orders

15The high probability of a LSA2 limit sell by an investor with good news later in the day when α = 0.8 is in
part due to the high probability that the incoming book will already have a LBB2 limit buy at B2 from an informed
investor at t1.
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by the informed Iv0 investors increases significantly at times t2 through t4 when the probability α

of informed traders increases. This is an example of increased informational competition. Third,

we expect neutrally informed Iv0 investors to respond differently to adverse selection than the unin-

formed U investors because the Iv0 investors have an advantage in that there is no adverse selection

risk for the Iv0 investors. They know the value shock ∆ is 0 and, thus, that the unconditional

valuation v0 is correct. We see this effect at times t2 through t4 when δ increases in the high α

markets and Iv0 investors increase their use of inside limit orders and U investors reduce their use

of inside limit orders. Overall, Tables 1 and 2 show that there is variation across parameterizations

in which considerations drive the neutrally informed investors’ behavior.

An equilibrium interaction in investor trading behavior is noteworthy in this context. Unin-

formed U investors are unwilling to use aggressive limit orders at the inside quotes at t1 when

the adverse selection risk is sufficiently high as in the upper-left parametrization (α = 0.8 and

δ = 1.6). This explains the fact that informed Iv̄ and Iv investors use aggressive limit orders at the

inside quotes at time t1 with a lower probability (0.335) in the upper-left (high adverse-selection)

parameterization than in the lower-left (less-intense adverse-selection) parametrization (α = 0.2

and δ = 1.4). At first glance this might seem counterintuitive since informational competition from

future informed investors (and the possibility of outside limit orders being undercut by later limit

orders) is greater when the informed-investor arrival probability α is large (i.e., α = 0.8 here). How-

ever, in equilibrium there is camouflage from the uninformed U investor limit orders at the inside

quotes in the lower-left parametization, whereas limit orders at the inside quotes are fully revealing

in the upper-left parametrization. Table B1 in Appendix B shows that, as a result, the execution

probabilities for the fully revealing limit orders at prices that are revealed to be far from the asset’s

actual value are much lower (0.078) relative to the non-fully revealing limit orders (0.735).16

16Uninformed investors with extreme private-values are still willing to hit limit orders when the market is fully
revealing.
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Table 1: Trading Strategies, Liquidity, and Welfare at Time t1 in an Equilibrium with Informed
Traders with β = 0 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table reports results for two
different informed-investor arrival probabilities α (0.8 and 0.2) and two different value-shock volatilities δ (1.4 and
0.2). The private-value parameters are µ = 0 and σ = 15, the tick size is κ = 1, and there are N = 5 trading dates.
Each cell corresponding to a set of parameters reports the equilibrium order-submission probabilities, the expected
bid-ask spreads and expected depths at the inside prices (A1 and B1) and total depths on each side of the market
after order submissions at time t1, and expected welfare of the market participants. The first four columns in each
parameter cell are for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed

traders (U). The fifth column (Uncond.) reports unconditional results for the market.

δ = 1.6 (top) or 1.4 (bottom) δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LSA2 0 0.500 0.665 0.146 0.340 0 0.500 1.000 0.052 0.410
LSA1 0 0 0.335 0 0.089 0 0 0 0.079 0.016
LBB1 0.335 0 0 0 0.089 0 0 0 0.079 0.016
LBB2 0.665 0.500 0 0.146 0.340 1.000 0.500 0 0.052 0.410

MBA2 0 0 0 0.354 0.071 0 0 0 0.369 0.074
MBA1 0 0 0 0 0 0 0 0 0 0
MSB1 0 0 0 0 0 0 0 0 0 0
MSB2 0 0 0 0.354 0.071 0 0 0 0.369 0.074
NT 0 0 0 0 0 0 0 0 0 0

α = 0.8
E[Spread |·] 2.665 3.000 2.665 3.000 2.821 3.000 3.000 3.000 2.842 2.968
E[Depth A2+A1 |·] 1.000 1.500 2.000 1.146 1.429 1.000 1.500 2.000 1.131 1.426
E[Depth A1 |·] 0 0 0.335 0 0.089 0 0 0 0.079 0.016
E[Depth B1 |·] 0.335 0 0 0 0.089 0 0 0 0.079 0.016
E[Depth B1+B2 |·] 2.000 1.500 1.000 1.146 1.429 2.000 1.500 1.000 1.131 1.426

E[Welfare LO |·] 0.327 0.611 0.327 0.198 0.377 0.288 0.688 0.288 0.153 0.368
E[Welfare MO |·] 0.100 0 0.100 3.357 0.725 0 0 0 3.390 0.678
E[Welfare |·] 0.427 0.611 0.427 3.556 1.102 0.288 0.688 0.288 3.543 1.046

LSA2 0 0.500 0 0.056 0.078 0 0.500 1.000 0.063 0.150
LSA1 0 0 1.000 0.393 0.381 0 0 0 0.397 0.318
LBB1 1.000 0 0 0.393 0.381 0 0 0 0.397 0.318
LBB2 0 0.500 0 0.056 0.078 1.000 0.500 0 0.063 0.150

MBA2 0 0 0 0.051 0.041 0 0 0 0.040 0.032
MBA1 0 0 0 0 0 0 0 0 0 0
MSB1 0 0 0 0 0 0 0 0 0 0
MSB2 0 0 0 0.051 0.041 0 0 0 0.040 0.032
NT 0 0 0 0 0 0 0 0 0 0

α = 0.2
E[Spread |·] 2.000 3.000 2.000 2.213 2.237 3.000 3.000 3.000 2.206 2.365
E[Depth A2+A1 |·] 1.000 1.500 2.000 1.449 1.459 1.000 1.500 2.000 1.460 1.468
E[Depth A1 |·] 0 0 1.000 0.393 0.381 0 0 0 0.397 0.318
E[Depth B1 |·] 1.000 0 0 0.393 0.381 0 0 0 0.397 0.318
E[Depth B1+B2 |·] 2.000 1.500 1.000 1.449 1.459 2.000 1.500 1.000 1.460 1.468

E[Welfare LO |·] 2.618 1.471 2.618 3.379 3.150 0.809 1.497 0.809 3.595 3.084
E[Welfare MO |·] 0 0 0 0.803 0.643 0 0 0 0.642 0.514
E[Welfare |·] 2.618 1.471 2.618 4.182 3.793 0.809 1.497 0.809 4.238 3.598
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Table 2: Averages for Trading Strategies, Liquidity, and Welfare across Times t2 through t4 for
Informed Traders with β = 0 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table reports results
for two different informed-investor arrival probabilities α (0.8 and 0.2) and for two different asset-value volatilities
δ (1.4 and 0.2). The private-value parameters are µ = 0 and σ = 15, the tick size is κ = 1, and there are N = 5
trading dates. Each cell corresponding to a set of parameters reports the equilibrium order-submission probabilities,
the expected bid-ask spreads and expected depths at the inside prices (A1 and B1) and total depths on each side of
the market after order submissions at times t2 through t4, and expected welfare for the market participants. The first
four columns in each parameter cell are for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
)

and for uninformed traders (U). The fifth column (Uncond.) reports unconditional results for the market.

δ = 1.6 (top) or 1.4 (bottom) δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LSA2 0 0.245 0.061 0.152 0.112 0.399 0.255 0.108 0.026 0.209
LSA1 0 0.255 0.289 0.025 0.150 0.192 0.239 0.288 0.064 0.205
LBB1 0.289 0.255 0 0.025 0.150 0.288 0.239 0.192 0.064 0.205
LBB2 0.061 0.245 0 0.152 0.112 0.108 0.255 0.399 0.026 0.209

MBA2 0.649 0 0 0.300 0.233 0 0 0 0.347 0.069
MBA1 0.001 0 0 0.019 0.004 0 0 0 0.058 0.012
MSB1 0 0 0.001 0.019 0.004 0 0 0 0.058 0.012
MSB2 0 0 0.649 0.300 0.233 0 0 0 0.347 0.069
NT 0 0 0 0.008 0.002 0.013 0.010 0.013 0.011 0.012

α = 0.8
E[Spread |·] 2.062 2.276 2.062 2.484 2.203 2.269 2.275 2.269 2.738 2.364
E[Depth A2+A1 |·] 1.039 2.326 2.626 1.785 1.955 2.165 2.300 2.433 1.608 2.161
E[Depth A1 |·] 0 0.362 0.938 0.258 0.398 0.226 0.362 0.506 0.131 0.318
E[Depth B1 |·] 0.938 0.362 0 0.258 0.398 0.506 0.362 0.226 0.131 0.318
E[Depth B1+B2 |·] 2.626 2.326 1.039 1.785 1.955 2.433 2.300 2.165 1.608 2.161

E[Welfare LO |·] 0.083 0.128 0.083 1.057 0.290 0.143 0.133 0.143 0.055 0.123
E[Welfare MO |·] 0.101 0 0.101 2.997 0.653 0 0 0 3.538 0.708
E[Welfare |·] 0.184 0.128 0.184 4.054 0.943 0.143 0.133 0.143 3.592 0.830

LSA2 0.103 0.390 0.579 0.086 0.140 0.375 0.389 0.443 0.093 0.155
LSA1 0 0.094 0.222 0.066 0.074 0.044 0.096 0.116 0.066 0.070
LBB1 0.222 0.094 0 0.066 0.074 0.116 0.096 0.044 0.066 0.070
LBB2 0.579 0.390 0.103 0.086 0.140 0.443 0.389 0.375 0.093 0.155

MBA2 0 0 0 0.215 0.172 0 0 0 0.218 0.175
MBA1 0.070 0 0 0.131 0.109 0 0 0 0.120 0.096
MSB1 0 0 0.070 0.131 0.109 0 0 0 0.120 0.096
MSB2 0 0 0 0.215 0.172 0 0 0 0.218 0.175
NT 0.026 0.033 0.026 0.005 0.009 0.022 0.030 0.022 0.005 0.009

α = 0.2
E[Spread |·] 2.097 2.127 2.097 2.367 2.315 2.212 2.173 2.212 2.478 2.422
E[Depth A2+A1 |·] 1.459 2.096 2.548 1.571 1.664 3.066 3.026 3.066 2.442 1.680
E[Depth A1 |·] 0.237 0.437 0.726 0.320 0.349 0.346 0.414 0.442 0.262 0.290
E[Depth B1 |·] 0.726 0.437 0.237 0.320 0.349 0.442 0.414 0.346 0.262 0.290
E[Depth B1+B2 |·] 2.548 2.096 1.459 1.571 1.664 2.257 2.091 1.932 1.576 1.680

E[Welfare LO |·] 1.227 0.589 1.227 0.475 0.583 0.596 0.654 0.596 0.500 0.523
E[Welfare MO |·] 0.276 0 0.276 3.469 2.812 0 0 0 3.417 2.734
E[Welfare |·] 1.503 0.589 1.503 3.944 3.395 0.596 0.654 0.596 3.917 3.257
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2.1.2 Market quality

Market liquidity changes when the amount of adverse selection in a market changes. A standard

intuition, as in Kyle (1985), is that liquidity deteriorates given more adverse selection. Roşu

(2016b) also finds worse liquidity (a wider bid-ask spread) given higher value volatility in his limit

order market. However, we show the standard intuition is not always true when informed investors

endogenously choose whether to supply liquidity via limit orders or take liquidity via market orders.

Observation 1 Liquidity can sometimes improve when adverse selection increases.

In particular, markets can become more liquid when, given the tick size, higher value-shock volatility

flips the value shock δ from being small to being large relative the price grid.

The impact of adverse selection on market liquidity follows directly from the trading strategies

in Section 2.1.1. Three intuitions are useful in understanding our market liquidity results. First,

the most aggressive way to trade (both on directional information and private values) is via market

orders, which take liquidity. However, the next most aggressive way to trade is via limit orders at the

inside prices. Thus, changes in market conditions (i.e., δ and α) that make directionally informed

investors trade more aggressively (i.e., that reduce their use of limit orders at the outside prices A2

and B2) can improve liquidity if their stronger trading interest migrates to aggressive limit orders at

the inside quotes (A1 and B1) rather than to market orders. We call this the aggressive directional

informed liquidity provision effect. Second, informed investors have a comparative advantage in

providing liquidity over uninformed investors since Iv0 investors know that the unconditional asset

value is correct. This is a version of the Bloomfield-O’Hara-Saar effect. Third, liquidity can change

due to composition effects when changes in α change the mix of informed and uninformed investors,

since different types of investors affect liquidity differently. Informed Iv0 investors with neutral

news are natural liquidity providers. Their impact on liquidity comes from whether they supply

liquidity at the inside (A1 and B1) or outside (A2 and B2) prices. In contrast, informed Iv̄ and

Iv investors with directional news and uninformed U traders affect liquidity depending on whether

they opportunistically take or supply liquidity. All three effects can contribute to overturning the

standard intuition about adverse selection and liquidity.
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The two measures of liquidity we focus on here are the expected bid-ask spread and the expected

depth at the inside prices. In Table 1, liquidity improves at time t1 when the value-shock volatility

δ increases (comparing parameterizations horizontally so that α is kept fixed). This happens,

contrary to the standard intuition, because the informed Iv and Iv traders submit limit orders at

the inside quotes in these high-volatility markets, whereas they only use limit orders at the outside

quotes in the low-volatility markets. The evidence against the standard adverse-selection intuition

is even stronger on average at times t2 through t4 in Table 2. Once again, liquidity improves when

δ increases for both the high and low αs. However, the underlying causes are different. When

α is high (0.8), most investors reduce their total use of inside limit orders (i.e., on both sides of

the market). Thus, the reason that average liquidity at times t2 through t4 is better in the high-

volatility market is a carry-over effect from the more liquid books at time t1. In contrast, when α

is low (0.2), high-volatility markets are more liquid due partly to the increased use of inside limit

orders by the directionally informed investors (i.e., the aggressive directional informed liquidity

provision effect) as well as due to the liquidity carry-over effect from time t1.

We also consider the effect of the arrival probability α for informed investors on liquidity. At

time t1, for both values of asset-value volatility δ, a higher probability α of informed investors leads

neutrally informed Iv0 investors to increase their total use of limit orders at the inside prices far more

than the other investors reduce their use of these orders. That, together with a composition effect

(i.e., with α = 0.8 there are more informed investors, and these informed investors use inside limit

orders more than the uninformed investors) and the liquidity carry-over from t1, is why liquidity

improves in this case.

Our results show that the relation between adverse selection and market liquidity in limit order

markets is more subtle than the standard intuition. In particular, it is the ability of investors

to choose endogenously whether to supply or demand liquidity and at what limit prices that can

overturn the standard intuition. Goettler et al. (2009) also investigate a market with informed

traders with no private-value motives and uninformed having only private-value motives. In their

model, when volatility increases, informed traders reduce their provision of liquidity and increase

their demand of liquidity; with the opposite holding for uninformed traders. Our results are more

27



nuanced. This is because the tick size of the price grid constrains the prices at which liquidity can

be supplied and demanded.

2.1.3 Welfare

Tables 1 and 2 also report results about investor welfare. Not surprisingly, the utility of directionally

informed investors increases when information volatility δ is higher. Interestingly, the results here

show the importance of limit orders for informed investors. Even in parameterizations in which

informed traders sometimes use market orders, most of their expected gains-from-trade come from

limit-order submissions. Perhaps more surprisingly, uniformed-investor utility is also often higher

when δ is larger. This is consistent with the associated increase in liquidity that allows uninformed

investors to capture more of their potential gains from trade. The net effect is that total active

investor welfare increases in high volatility markets. In contrast, total welfare is less when the

arrival probability α of informed investors increases. This is due to the fact that in this model

only the uninformed U investors have gains-from-trade (i.e., gains from private information are

just zero-sum transfers between investors).

2.1.4 Information content of orders

Traders in real-world markets and empirical researchers are interested in the information content

of different types of orders.17 A necessary condition for an order to be informative is that informed

investors use it. However, the magnitude of order informativeness is determined by the mix of

equilibrium probabilities with which informed and uninformed traders use an order. If uninformed

traders use the same orders as informed investors, they add noise to the price discovery process,

and orders become less informative. In our model, the mix of information– and noise–based orders

depends on the underlying proportion α of informed investors and the value-shock volatility δ.

We expect different market and limit orders to have different information content. A natural

conjecture is that the sign of the information revision associated with an order should agree with the

direction of the order (e.g., buy market and limit orders should lead to positive valuation revisions).

17Fleming et al. (2017) extend the VAR estimation approach of Hasbrouck (1991) to estimate the price impacts of
limit orders as well as market orders. See also Brogaard et al. (2016).
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Another natural conjecture is that the magnitude of information revisions should be greater for

more aggressive orders. However, we find that the order-sign and order-aggressiveness conjectures

do not always hold.

Observation 2 Order informativeness is not always increasing in the aggressiveness of an order.

Observation 3 The direction of order informativeness can be opposite the order sign.

These, at-first-glance surprising, results are another consequence of how informed investors trade

on their information. As a result, the relative informativeness of different market and limit orders

can flip in high-volatility and low-volatility markets.

The order-aggressiveness violation is immediate from first principles for market orders versus

(less aggressive) limit orders in low-volatility (δ = 0.2) markets in which informed investors avoid

market orders all together. However, it can also obtain in other parametrizations. In addition, the

order-aggressiveness conjecture can also fail for aggressive limit orders at the inside quotes (A1 and

B1) versus less-aggressive limit orders at the outside quotes (A2 and B2).

Figure 3 shows the informativeness of different types of orders. Each row contains four plots

showing the informativeness of particular types of orders submitted at different times during the day

for the indicated market parameterizations. Informativeness at time t1 is measured as the Bayesian

revision E[v|xt1 ] − E[v] in the uninformed investor’s expectation of the terminal value v after

observing different given types of orders xt1 at time t1. The analogous measure of informativeness

at later dates t2 through t4 is the Bayesian revision E[v|Ltj−1 , xtj ]−E[v|Ltj−1 ] for different given

types of orders xtj at time tj relative to the incoming expectation conditional on the preceding in-

equilibrium order-flow history Ltj−1 . In particular, the informativeness of a given order may change

over time and may differ conditional on different preceding order histories. The vertical heights

of the individual dots in the plots indicate the informativeness of given orders at particular times

given specific preceding histories.18 The associated probabilities can differ across the different dots.

The rectangles show the range of our informativeness metrics across paths. The vertical height of

18A given sequence of equilibrium orders might be produced by more than one investor-arrival sequence. Thus,
individual dots correspond to sets of investor arrival sequences. Note here that the horizontal spacing of the dots in
the plots is simply for ease of viewing.
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the blue squares indicate the probability-weighted average informativeness of a given type of order

across all prior in-equilibrium paths. The figure reports results for market and limit buy orders.

The results are symmetric for sell orders.

The results in Figure 3 point to a variety of properties about order informativeness. First,

perhaps the most obvious point is the heterogeneity in the information content of a given order at

different times during the day and conditional on different prior order-flow histories. For example,

plot 3(c) shows the Bayesian revisions for a LBB1 limit buy order at the inside quotes B1 in the

high δ = 1.6 and high α = 0.8 market. At time t1, a LBB1 order is fully revealing, and so the

Bayesian revision relative to the unconditional expectation is 1.6. This follows from the fact in

Table 1 that only informed Iv̄ investors with good news use LBB1 orders at time t1. However, at

later dates an LBB1 limit order has different information content depending on the prior history.

Over time the number of equilibrium paths grows by definition, but, in addition, we also see that,

in equilibrium, the amount of informational heterogeneity across paths also grows (i.e., the number

of dots associated with individual paths grows). Moreover, there are an increasing number of paths

with zero Bayesian revisions. One reason this happens is that the number of fully revealing prior

order histories is non-decreasing over time.

Second, Figure 3 shows that the order-aggressiveness conjecture for order informativeness can

fail in a variety of ways. While the conjecture can fail at the level of an individual path, we focus

here on even stronger results in which the order-aggressiveness conjecture fails in expectation. One

example is that the expected Bayesian revisions across-paths (the small solid squares) for limit

orders are frequently further from zero than for market orders. This is follows immediately from

Proposition 1 for low-volatility markets (δ = 0.2), but the conjecture also fails in high-volatility

markets. For example, in the high δ = 1.6 and high α = 0.8 market, the average revisions for limit

orders in Plots 3(c) and 3(d) are always larger than for market orders in Plots 3(a) and 3(b). This

is also true Plots 3(e) through 3(h) in the high δ = 1.6 and low α = 0.2 market.

The order-aggressiveness conjecture can also fail for aggressive vs. less-aggressive limit orders.

Comparing Plots 3(c) and 3(d) at times t3 and t4, it is visually apparent that less-aggressive LBB2

limit buys have larger average Bayesian revisions than the aggressive LBB1 limit buys. The same
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is also true in plots 3(g) and 3(h) at times t2 and t3 in the high-δ/low-α market. Having shown

that the aggressiveness conjecture can fail, we also note that it does not always fail. For example,

the average Bayesian revions for aggressive limit orders at times t1 and t2 in Plot 3(c) are larger

than for the less-aggressive limit orders in Plot 3(d).

Third, Figure 3 shows that violations of the order-sign conjecture are rare but possible. In most

cases, buy orders are associated with non-negative Bayesian revisions for each of the individual

paths. However, the order-sign conjecture fails in expectation for LBB2 limit buys at time t2 in

the high-α/low-δ parameterization in Plot 3(l). This result is a consquence of the fact in Table

2 that directionally informed investors use outside limit orders to provide liquidity opposite their

information (e.g., to buy via limit orders at B2 since the value v given bad new is still above B2)

more than to trade with their information (i.e., to buy via limit orders at B2 given good news). In

Section 2.2 below, we will see that violations of the order-sign conjecture are even more frequent

when informed investors also have private-value motives to trade.
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Figure 3: Order Informativeness for the Model with Informed Traders with β = 0 and Uninformed Traders with β ∼ Tr[N (µ, σ2)].
for times t1 to t4. This figure shows the path-contingent Bayesian value-forecast revisions E[v|Ltj−1, xt−j ] − E[v|Ltj−1], which shows the change in
the uninformed traders’s expected value of the fundamental conditional on the order. We only consider orders when they are equilibrium orders for the
trading periods. Each dot indicates an equilibrium revision, the plots indicate the maximum and the minimum. The plots are grouped by their respective
market parameterizations (δ, α).

a) α = 0.8 δ = 1.6, Order:MBA2 b)α = 0.8 δ = 1.6, Order:MBA1 c)α = 0.8 δ = 1.6, Order:LBB1 d)α = 0.8 δ = 1.6, Order:LBB2
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Figure 3 Continued: Order Informativeness for the Model with Informed Traders with β = 0 and Uninformed Traders with β ∼
Tr[N (µ, σ2)]. for times t1 to t4.
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2.1.5 Non-Markovian learning

This section investigates the role of the order history on Bayesian learning. A major difference

between our model and Goettler et al. (2009) and Roşu (2016b) is that they assume learning is

Markovian in the sense that the current limit order book Ltj is a sufficient statistic at time tj > t1

for the information content of the full prior trading history Ltj . Thus, our first question here is

whether the prior order history has information about the asset value v in excess of the information

in the current limit order book. If it does, then learning is non-Markovian.19

The plots in Figure 4 measure the non-Markov information content of order histories by

E[v|Ltj (Ltj )]− E[v|Ltj ], (13)

which is incremental information in the uninformed investors’ expected asset value conditional on

an order history path Ltj (Ltj ) ending with a particular limit order book Ltj at time tj net of the

corresponding expectation conditional on just the ending book Ltj . In particular, we are interested

in books Ltj that can be preceded in equilibrium by more than one different prior history. If

learning is Markov, then order histories Ltj (Ltj ) preceding a book Ltj should convey no additional

information beyond Ltj ; in which case our metric in (13) should be zero. Individual dots in the

plots indicate the incremental information content of particular histories preceding different orders

submitted at each of the different dates. Time t1 is included in the plot because books Lt1 at t1

can potentially be produced by different sequences of investor actions xt1 and crowd responses at

t1. More generally, the book Ltj at each time tj reflects information due to the path of past active

investor actions, but past crowd actions can partially obscure this information (e.g., as when the

crowd replenishes the book after active investors deplete the book at the outside prices). Each plot

is for a different combination of adverse-selection parameters. For brevity, the plots contain all

possible books, rather than having individual plots (as in Figure 3) for each individual order.

19The evidence of path-contingent order informativeness in Figure 3 by itself does not necessarily imply non-
Markovian learning. Markovian learning is still possible if the incoming book Ltj at time tj summarizes the inform-
ation content of the full order history Ltj (Ltj ) preceding book Ltj .
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Figure 4: Informativeness of the Order History for the Model with Informed Traders with β = 0
and Uninformed Traders with β ∼ Tr[N (µ, σ2)] for Times t1 through t4. This figure shows the
incremental information content of the past order history in excess of the information in the current limit order
book observed at the end of time tj as measured by E[v|Ltj (Ltj )] − E[v|Ltj ] where Ltj (Ltj ) is a history ending
in the limit order book Ltj . We only consider books Ltj when they occur in equilibrium in the different trading
periods. The dots indicate values for particular books and paths, and the rectangles show the range of maximum
and minimum values.

(a) Parameters: α = 0.8, δ = 1.6 (b) Parameters: α = 0.8, δ = 0.2

(c) Parameters: α = 0.2, δ = 1.4 (d) Parameters: α = 0.2, δ = 0.2

The main result from Figure 4 is that there is substantial incremental information in the pre-

ceding order histories after conditioning on the prior limit order book.

Observation 4 The price discovery dynamics can be significantly non-Markovian.

As expected, the variation in the incremental information content of the prior order history in

Figure 4 is greater when the shock volatility δ is greater (note the difference in vertical scales).

35



Figure 5: Order Informativeness for the Model with Informed Traders with β = 0 and Uninformed
Traders with β ∼ Tr[N (µ, σ2)] for times t1 to t2 and parameters α = 0.8, δ = 1.6. The horizontal
axis reports E(v|xt1)−E(v) which shows how the uninformed traders’ Bayesian value-forecast changes with respect
to the unconditional expected value of the fundamental when uninformed traders observe at t1 an equilibrium order
xt1 . The vertical axis reports E(v|xt1 , xt2)−E(v) which shows how the uninformed traders’ Bayesian value-forecast
changes with respect to the unconditional expected value of the fundamental when uninformed traders observe at
xt2 at t2. We consider all the equilibrium strategies at t1 and t2 which are symmetrical. Green (red) circles show
equilibrium buy (sell) orders at t2.
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Given that learning is non-Markovian, the next question is about how the size of the valuation

revisions depends on the prior trading history. In Figure 5, the horizontal axis shows the valuation

revision E(v|xt1) − E(v) given different equilibrium actions xt1 at t1, and the vertical axis gives

the corresponding cumulative valuation revision E(v|xt1 , xt2) − E(v) as of time t2 given different

sequences of equilibrium actions xt1 at time t1 followed by different possible equilibrium successor

actions xt2 at time t2. From iterated expectations, the expectation of the two-period revision given

the first period action is the first-period revision, which is denoted here by the 45◦ line. However,

there is randomness around the 45◦ line induced by different actions at time t2.

Consistent with our previous analysis, the size of the valuation revision depends crucially on
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the informed investors’ equilibrium strategies. As informed investors do not use market orders at

t1 (see Table 1), market orders have a zero price impact at t1 and, thus, the points for pairs of time

t1 and t2 price-impacts for sequences of a market order at t1 and then different orders at time t2

all line up on the vertical axis line.

One intuitive conjecture about the relation between earlier orders and subsequent valuation-

revision dynamics is to expect, conditional on the amount of adverse selection (i.e., the δ and α

parameterization), the volatility of the incremental valuation revision at time t2 relative to time t1

(i.e., the vertical dispersion around the 45◦ line) to be decreasing in the magnitude of the valuation

revision associated with the trading action at time t1. However, that is not obvious in the figure.

2.1.6 Price impact of order flow

A standard empirical measure of price-discovery is the price impact of order flow. The idea is

that the price impact of orders can be decomposed into two components: One measures the size

of surprises in an arriving order relative to its expectation given the prior history, and the second

measures the marginal (per-share) impact of order-flow surprises on the informational component of

a security’s valuation. Fleming et al. (2017) and Brogaard et al. (2016) extend the Hasbrouck (1991)

vector autoregression methodology — a standard empirical technique to estimate this decompos-

ition — to allow for limit orders as well as market orders. Using our notation, their information

innovation equation can be written as

E[v|xt,Lt−1]− E[v|Lt−1] =
∑
k

λk[Q
xt
k,t − E[Qxtk,t|Lt−1]] (14)

where Qxtk,t −E[Qxtk,t|Lt−1] in the innovation in the number of shares Qxtk,t associated with an order

type k (e.g., a particular market or limit order) given the investor action xt at time t, and λk is a

constant marginal price impact for order type k.

Our model suggests an extension of the VAR approach that we call the conditional price impact

of order flow. In particular, the price impact of order flow, rather than being a constant λk, can

vary over time given different types of conditioning information. In our model, the price impact

is a function λk(t,Lt−1) that is conditional on the prior trading history Lt−1 and on time tj . In
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its most general form, our model would require machine learning techniques to deal with large

amounts of transactional data and high-dimensional functional relationships. Simpler empirical

specifications might look at the effect of conditioning just on time via a deterministic function

λk(t) or conditioning (as in GPR 2009) just on the standing limit order book Lt−1 at the time

orders arrives via a function λk(t, Lt−1).

Figure 6 shows that even our very simple model generates substantial variation in the conditional

price impact of orders. Consider an order sequence {Ltj−1 , xtj} where sequences {Ltj−1 , xtj} and

{Ltj−1 , NT} both have positive probabilities. As a metric for dispersion in the conditional price

impact of order flow, we compute

max
Ltj−1

E[v|Ltj−1 , xtj ]− E[v|Ltj−1 , NT ]− min
Ltj−1

E[v|Ltj−1 , xtj ]− E[v|Ltj−1 , NT ] (15)

In words, E[v|Ltj−1 , xtj ]−E[v|Ltj−1 , NT ] is the differential informational impact of a one-unit

innovation in order type xtj relative to NT where differencing controls for expectations given the

prior history Ltj−1 . The metric in (15) is the spread between the maximal and minimum differential

informational innovation across all paths Ltj−1 such that order xtj and NT both occur with positive

probability following the different paths Ltj−1 . As can be seen, the amount of cross-path dispersion

in the conditional impact of order flow can be substantial.20

2.1.7 Summary

The analysis of our first model specification has identified a number of empirically testable predic-

tions. First, liquidity and the relative information content of different orders differ in high-volatility

markets (in which value shocks are large relative to the tick size) vs. in low-volatility markets.

Second, it is possible for less-aggressive orders to be more informative than more aggressive orders

and for the information content of some orders to be opposite the order sign. Third, price discovery

is non-Markov, and the price impact of individual orders varies conditional on the prior order-flow

history.

20Our order-impact statistic can only be computed once the book is sufficiently full such that NT becomes an
option for arriving investors. In these parameterizations, that only happens at time t4.
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Figure 6: Dispersion in the price impact of order flow The plot reports maxLtj−1
(E[v|Ltj−1 , xtj ] −

E[v|Ltj−1 , NT ])−minLtj−1
(E[v|Ltj−1 , xtj ]− E[v|Ltj−1 , NT ]) at different times, which shows how the prior order

history affects the marginal price impact of the surprise in a given order. The parameterization is: α = 0.2, δ = 1.4
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2.2 Informed and uninformed traders both have private-value motives

Our second model specification generalizes our earlier analysis. Now informed investors also

have random private-valuation factors βtj with the same truncated-Normal distribution βtj ∼

Tr[N (µ, σ2)] as the uninformed investors. Hence, informed traders not only speculate on their

information, but they also have private-value motives to trade. As a result, informed investors

with the same signal may end up buying and selling from each other. This combination of trading

motives has not been investigated in earlier models of dynamic limit order markets. We use our

second model specification to assess the robustness of the results in Section 2.1 and to extend them.
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Table 3: Trading Strategies, Liquidity, and Welfare at Time t1 in an Equilibrium with Informed
and Uninformed Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two different informed-
investor arrival probabilities α (0.8 and 0.2) and two different value-shock volatilities δ (1.4 and 0.2). The private-value
parameters are µ = 0 and σ = 15, the tick size is κ = 1, and there are N = 5 trading dates. Each cell corresponding to
a set of parameters reports the equilibrium order-submission probabilities, the expected bid-ask spreads and expected
depths at the inside prices (A1 and B1) and total depths on each side of the market after order submisions at time t1,
and the expected welfare of the market participants. The first four columns in each parameter cell are for informed
traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth column

(Uncond.) reports unconditional results for the market.

δ = 1.4 δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LSA2 0.107 0.053 0.032 0.062 0.064 0.054 0.048 0.042 0.048 0.048
LSA1 0.333 0.447 0.303 0.438 0.377 0.438 0.452 0.466 0.452 0.452
LBB1 0.303 0.447 0.333 0.438 0.377 0.466 0.452 0.438 0.452 0.452
LBB2 0.032 0.053 0.107 0.062 0.064 0.042 0.048 0.054 0.048 0.048

MBA2 0.224 0 0 0 0.060 0 0 0 0 0
MBA1 0 0 0 0 0 0 0 0 0 0
MSB1 0 0 0 0 0 0 0 0 0 0
MSB2 0 0 0.224 0 0.060 0 0 0 0 0
NT 0 0 0 0 0 0 0 0 0 0

α = 0.8
E[Spread |·] 2.363 2.106 2.363 2.123 2.247 2.096 2.096 2.096 2.096 2.096
E[Depth A2+A1 |·] 1.441 1.500 1.335 1.500 1.440 1.492 1.500 1.508 1.500 1.500
E[Depth A1 |·] 0.333 0.447 0.303 0.438 0.377 0.438 0.452 0.466 0.452 0.452
E[Depth B1 |·] 0.303 0.447 0.333 0.438 0.377 0.466 0.452 0.438 0.452 0.452
E[Depth B1+B2 |·] 1.335 1.500 1.441 1.500 1.440 1.508 1.500 1.492 1.500 1.500

E[Welfare LO |·] 2.776 4.454 2.776 4.295 3.527 4.462 4.465 4.462 4.461 4.462
E[Welfare MO |·] 1.671 0 1.671 0 0.891 0 0 0 0 0
E[Welfare |·] 4.447 4.454 4.447 4.295 4.419 4.462 4.465 4.462 4.461 4.462

LSA2 0.061 0.050 0.043 0.050 0.050 0.049 0.048 0.046 0.048 0.048
LSA1 0.368 0.450 0.484 0.450 0.447 0.441 0.452 0.464 0.452 0.452
LBB1 0.484 0.450 0.368 0.450 0.447 0.464 0.452 0.441 0.452 0.452
LBB2 0.043 0.050 0.061 0.050 0.050 0.046 0.048 0.049 0.048 0.048

MBA2 0.045 0 0 0 0.003 0 0 0 0 0
MBA1 0 0 0 0 0 0 0 0 0 0
MSB1 0 0 0 0 0 0 0 0 0 0
MSB2 0 0 0.045 0 0.003 0 0 0 0 0
NT 0 0 0 0 0 0 0 0 0 0

α = 0.2
E[Spread |·] 2.148 2.101 2.148 2.101 2.107 2.096 2.096 2.096 2.096 2.096
E[Depth A2+A1 |·] 1.429 1.500 1.526 1.500 1.497 1.490 1.500 1.510 1.500 1.500
E[Depth A1 |·] 0.368 0.450 0.484 0.450 0.447 0.441 0.452 0.464 0.452 0.452
E[Depth B1 |·] 0.484 0.450 0.368 0.450 0.447 0.464 0.452 0.441 0.452 0.452
E[Depth B1+B2 |·] 1.526 1.500 1.429 1.500 1.497 1.510 1.500 1.490 1.500 1.500

E[Welfare LO |·] 4.093 4.452 4.093 4.433 4.389 4.466 4.465 4.466 4.465 4.465
E[Welfare MO |·] 0.422 0 0.422 0 0.056 0 0 0 0 0
E[Welfare |·] 4.516 4.452 4.516 4.433 4.445 4.466 4.465 4.466 4.465 4.465
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Table 4: Averages for Trading Strategies, Liquidity, and Welfare across Times t2 through t4 for
Informed and Uninformed Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two different
informed-investor arrival probabilities α (0.8 and 0.2) and for two different asset-value volatilities δ (1.4 and 0.2).
The private-value parameters are µ = 0 and σ = 15, the tick size is κ = 1, and there are N = 5 trading dates.
Each cell corresponding to a set of parameters reports the equilibrium order-submission probabilities, the expected
bid-ask spreads and expected depths at the inside prices (A1 and B1) and total depths on each side of the market
after order submissions at times t2 through t4, and the expected welfare of the market participants. The first four
columns in each parameter cell are for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and

for uninformed traders (U). The fifth column (Uncond.) reports unconditional results for the market.

δ = 1.4 δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

LSA2 0.138 0.121 0.094 0.115 0.117 0.127 0.123 0.119 0.123 0.123
LSA1 0.103 0.057 0.050 0.065 0.069 0.057 0.053 0.048 0.053 0.053
LBB1 0.050 0.057 0.103 0.065 0.069 0.048 0.053 0.057 0.053 0.053
LBB2 0.094 0.121 0.138 0.115 0.117 0.119 0.123 0.127 0.123 0.123

MBA2 0.263 0.192 0.123 0.194 0.193 0.207 0.194 0.181 0.194 0.194
MBA1 0.158 0.128 0.069 0.124 0.119 0.133 0.128 0.124 0.129 0.128
MSB1 0.069 0.128 0.158 0.124 0.119 0.124 0.128 0.133 0.129 0.128
MSB2 0.123 0.192 0.263 0.194 0.193 0.181 0.194 0.207 0.194 0.194
NT 0.003 0.003 0.003 0.004 0.004 0.004 0.003 0.004 0.004 0.004

α = 0.8
E[Spread |·] 2.352 2.326 2.352 2.365 2.348 2.336 2.337 2.336 2.337 2.336
E[Depth A2+A1 |·] 1.602 1.599 1.550 1.570 1.581 1.590 1.593 1.596 1.593 1.593
E[Depth A1 |·] 0.308 0.339 0.344 0.320 0.328 0.324 0.333 0.344 0.333 0.334
E[Depth B1 |·] 0.344 0.339 0.308 0.320 0.328 0.344 0.333 0.324 0.333 0.334
E[Depth B1+B2 |·] 1.550 1.599 1.602 1.570 1.581 1.596 1.593 1.590 1.593 1.593

E[Welfare LO |·] 0.872 0.700 0.872 0.720 0.796 0.674 0.671 0.674 0.670 0.672
E[Welfare MO |·] 3.272 3.333 3.272 3.313 3.296 3.357 3.357 3.357 3.358 3.357
E[Welfare |·] 4.144 4.032 4.144 4.034 4.092 4.031 4.028 4.031 4.028 4.029

LSA2 0.130 0.123 0.115 0.122 0.122 0.124 0.123 0.122 0.123 0.123
LSA1 0.058 0.054 0.049 0.053 0.053 0.053 0.053 0.052 0.053 0.053
LBB1 0.049 0.054 0.058 0.053 0.053 0.052 0.053 0.053 0.053 0.053
LBB2 0.115 0.123 0.130 0.122 0.122 0.122 0.123 0.124 0.123 0.123

MBA2 0.249 0.194 0.143 0.195 0.195 0.202 0.194 0.186 0.194 0.194
MBA1 0.156 0.127 0.095 0.127 0.127 0.133 0.128 0.124 0.128 0.128
MSB1 0.095 0.127 0.156 0.127 0.127 0.124 0.128 0.133 0.128 0.128
MSB2 0.143 0.194 0.249 0.195 0.195 0.186 0.194 0.202 0.194 0.194
NT 0.004 0.003 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.004

α = 0.2
E[Spread |·] 2.337 2.335 2.337 2.339 2.338 2.337 2.337 2.337 2.337 2.337
E[Depth A2+A1 |·] 1.552 1.595 1.632 1.591 1.592 1.587 1.593 1.599 1.592 1.592
E[Depth A1 |·] 0.293 0.334 0.373 0.332 0.333 0.327 0.333 0.339 0.333 0.333
E[Depth B1 |·] 0.373 0.334 0.293 0.332 0.333 0.339 0.333 0.327 0.333 0.333
E[Depth B1+B2 |·] 1.632 1.595 1.552 1.591 1.592 1.599 1.593 1.587 1.592 1.592

E[Welfare LO |·] 0.679 0.682 0.679 0.669 0.671 0.671 0.671 0.671 0.671 0.671
E[Welfare MO |·] 3.453 3.347 3.453 3.355 3.367 3.359 3.357 3.359 3.357 3.358
E[Welfare |·] 4.131 4.029 4.131 4.023 4.038 4.030 4.028 4.030 4.028 4.028
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2.2.1 Trading strategies

Tables 3 and 4 report order-submission probabilities and other statistics for our second model

specification for time t1 and for averages over times t2 through t4. There are a few differences relative

to Tables 1 and 2 for the simpler model in Section 2.1. First, now all investors use all of the possible

limit orders in both time windows, since now all investors have private-value motives to trade.

Second, informed investors of all types sometimes use market orders at times t2 through t4 due to

their private-value trading motive. In particular, informed Iv0 investors with neutral news no longer

just provide liquidity using limit orders. The same is also true of directionally informed investors

even when δ is small. Third, directionally informed investors sometimes now trade opposite their

asset-value information. In particular, we say an Iv̄ or Iv
¯

investor is trading with their information

when they buy (sell) given good (bad) news. Trading opposite their information is doing the reverse.

Investors trade opposite their information when their random private-value motive overwhelms

their speculative motive. Both tables show that limit orders are often used more by investors to

trade opposite their information than to trade with their information. For example, in all of the

parameterizations at time t1 and on average at times t2 through t4, informed investor with good

news use LSA2 limit sells at A2 to trade against their information with a higher probability than

informed investors with bad new use LSA2 limit sells to trade with their information. The same is

also true for LSA1 limit sells at A1 at t1 for the high-δ/high-α parameterization and on average at

times t2 through t4 for all four parameterizations. This fact will have important implications for

the information content (considered below) of such limit orders.

Consider next the impact of adverse selection on trading behavior. The effect of higher δ and

higher α on the trading behavior of informed traders Iv̄ and Iv
¯

with directional news differs when

they are trading with or opposite their information. For investors trading with their information,

we see the aggressiveness effect again, similar to the results in Section 2.1. In particular, increased

adverse selection leads to a reduction in the use of less-aggressive outside limit orders when trading

with directional good and bad news and an increase in the use of more aggressive orders. The

net effect on aggressive limit orders at inside prices is a priori ambiguous in these cases due to in-

migration of probability from the reduced use of the outside limit orders but possible out-migration
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of probability to market orders. For example, comparing the upper two parameterizations in Table

3 shows that when δ is increased with α fixed at 0.8, the Iv̄ investors with good news at time t1

reduce the strategy probability for LBB2 orders from 0.042 to 0.032 and increase the probability

for MBA2 orders from 0 to 0.244, and reduce the use of LBB1 limit orders from 0.466 to 0.303.

The effect of adverse selection is different from above when investors trade opposite their dir-

ectional information. Now increased adverse selection causes informed investors trading opposite

their information to increase their use of less-aggressive limit orders at the outside prices. In par-

ticular, when δ increases, informed investors with good news v̄ (bad news v) know the security

is worth more (less) and require a higher (lower) price when selling. However, when α increases,

the reason is a supply/demand effect: The demand for buying (selling) increases since now more

investors know the good (bad) news, and, thus, informed investors willing to sell (buy) can increase

the price of the liquidity they provide.

The effects of higher volatility on uninformed U traders slightly differs at t1 as opposed to times

t2 through t4. At t1, uninformed traders do not use market orders in these parametrizations, but

they do tend to post slightly more patient outside limit orders when adverse selection increases

(comparing the strategy probabilities for LBB2 and LSA2). This change in order-submission

strategies is the consequence of uninformed traders offering liquidity at more profitable price levels

to make up for the increased adverse selection costs. In later periods t2 through t4, as uninformed

traders learn about the fundamental value of the asset, they still take liquidity at the outside quotes

(the probabilities of MBA2 and MSB2 increase slightly to 0.195 in Table ??), but move to the

inside quotes to supply liquidity (LSA1 and LBB1 increase to 0.067 for times t2 through t4). As

they learn about the future value of the asset, uninformed traders perceive less adverse selection

costs and can afford to offer liquidity at more aggressive quotes. In contrast, the effect of increased

value-shock volatility on the trading behavior of Iv0 investors with neutral news is relatively modest

both at time t1 and at times t2 through t4.
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2.2.2 Market quality

Market quality — as measured by both expected spreads and inside depth in Tables 3 and 4 —

is almost always decreasing in adverse selection in this second model. This is a notable difference

from our first model. However, this is not surprising given the generally greater use of market

orders due to the potentially large range of private values. In particular, when the gains-from-trade

are large, order execution is more important than price improvement.

2.2.3 Information content of orders

Figure 7 shows the distribution of Bayesian revisions for the different orders at different times and

conditional on different prior order-flow paths. The format is the same as in Figure 3. Once again,

there is heterogeneity in the information content of orders over time and conditional on the preceding

history. Not surprisingly, the amount of heterogeneity is less since there is substantially less price

discovery in this second model specification given that informed investor orders are now affected

by noise from private values as well as information. In addition, we still see violations of the order

aggressiveness conjecture. Consider, for example, the high adverse-selection parameterization with

high vδ and high α. The most informative orders at t1 and t2 are the market orders. However, the

less-aggressive LBB2 outside limit orders have a higher average informativeness than the aggressive

LBB1 inside limit orders at t1 and also, less obviously visually, at t2. The same is also true for

limit orders at t1 in the low-δ/high-α parameterization.

Observation 5 The Bayesian value revision can be opposite the direction of an order.

Violations of the order-sign conjecture are much more common in this second model specifica-

tion. For example, in the high-δ/high-α parameterization, LBB2 limit buys at t1 reveal bad news

(rather than good news as one might expect given that they are buy orders). The same is true, but

less obvious visually, of LBB2 at dates t2 through t4 and also of LBB1 limit buys at t1 through

t4. This is because, as noted above, limit buys in our second model specification are used more

frequently by directionally informed investor to trade opposite (rather than with) their information

(i.e., due to their private-values βtj ).
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2.2.4 Non-Markovian learning

Figure 8 shows once again the variation in the incremental information E[v|Ltj (Ltj )]−E[v|Ltj ] in

the prior order histories Ltj (Ltj ) preceding different books Ltj . The plots here confirm our earlier

results about non-Markovian learning.
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Figure 7: Order Informativeness for the Model with Informed Traders and Uninformed Traders both with β ∼ Tr[N (µ, σ2)]. for
times t1 to t4. This figure shows the path-contingent Bayesian value-forecast revisions E[v|Ltj−1, xt−j ] − E[v|Ltj−1], which shows the change in the
uninformed traders’s expected value of the fundamental conditional on the order. Plots a,c,e and g show graphs for the parametrization with α = 0.8 and
δ = 1.4. Plots b,d,f and h show graphs for the parametrization with α = 0.8 and δ = 0.2. Plots i,k,m and o show graphs for the parametrization with
α = 0.2 and δ = 1.6. Plots j,l,n and p show graphs for the parametrization with α = 0.2 and δ = 0.2. We only consider orders when they are equilibrium
orders for the trading periods. Each dot indicates an equilibrium revision, the plots indicate the maximum and the minimum.

a)α = 0.8 δ = 1.4, Order:MBA2 b)α = 0.8 δ = 1.4, Order:MBA1 c)α = 0.8 δ = 1.4, Order:LBB1 d)α = 0.8 δ = 1.4, Order:LBB2

e)α = 0.2 δ = 1.4, Order:MBA2 f)α = 0.2 δ = 1.4, Order:MBA1 g)α = 0.2 δ = 1.4, Order:LBB1 h)α = 0.2 δ = 1.4, Order:LBB2



Figure 7 Continued: Order Informativeness for the Model with Informed Traders and Uninformed Traders both with β ∼ Tr[N (µ, σ2)].
for times t1 to t4.

i)α = 0.8 δ = 0.2, Order:MBA2 j)α = 0.8 δ = 0.2, Order:MBA1 k)α = 0.8 δ = 0.2, Order:LBB1 l)α = 0.8 δ = 0.2, Order:LBB2

m)α = 0.2 δ = 0.2, Order:MBA2 n)α = 0.2 δ = 0.2, Order:MBA1 o)α = 0.2 δ = 0.2, Order:LBB1 p)α = 0.2 δ = 0.2, Order:LBB2



Figure 9 plots the cumulative valuation revisions up though time t2 against the corresponding

revisions along that path through time t1 for the high adverse-selection (high δ and high α) para-

meterization. The relationship is more subtle than in Figure 5 due to the more frequent violation

of the order-sign conjecture in our second model. In particular, a LSA2 sell limit order at time t1 is

associated with good news (rather than bad news) due to the opposite-side effect. The volatility of

the incremental revision at time t2 is large due to the possibility of a market buy order MBA2 at t2

(which would reveal further good news) or a market sell order MSB2 (which would reveal bad news

resulting in a negative cumulative revision up through time t2). Note also that the distribution of

the incremental revision at time t2 is very skewed following a market buy order MBA2 at time t1.

Most of the revisions are clustered near the 45◦ line, but there is a small equilibrium probability

of a market sell order MSB2 leading to a very large negative downward revision in the lower-right

quadrant.

2.2.5 Price impact of order flow

Figure 10 confirms qualitatively our earlier results about intraday time-contingency and path-

dependence in the price impact of order flow. The main difference is that, as expected, the additional

noise due to the informed-investor private values makes the magnitudes of the effects here smaller

than in Figure 6.

2.2.6 Summary

The results for our second model specification — with the richer specification of the informed in-

vestors’ trading motives — confirm and extend the analysis from our first model specification. First,

increased adverse selection affects informed-investor trading behavior differently when directionally

informed investors trade with their information versus (because of private-value shocks) against

their information. Second, it is again possible for the informativeness of orders to be opposite

the order aggressiveness and now also opposite the order direction. Third, information content of

arriving orders is again history-dependent.
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Figure 8: History Informativeness for Informed and Uninformed Traders both with
β ∼ Tr[N (µ, σ2)] for times t1 through t4. This Figure shows the incremental information content of
the past order history in excess of the information in the current limit order book observed at the end of time tj
as measured by E[v|Ltj (Ltj )] − E[v|Ltj ] where Ltj (Ltj ) is a history ending in the limit order book Ltj . We only
consider books Ltj when they occur in equilibrium in the different trading periods. The candlesticks indicate for

each of these two metrics the maximum, the minimum, the median and the 75th (and 25th) percentile respectively
as the top (bottom) of the bar.

(a) Parameters: α = 0.8, δ = 1.4 (b) Parameters: α = 0.8, δ = 0.2

(c) Parameters: α = 0.2, δ = 1.6 (d) Parameters: α = 0.2, δ = 0.2

3 Robustness

Our analysis makes a number of simplifying assumptions for tractability, but we conjecture that our

qualitative results are robust to relaxing these assumptions. We consider two of these assumptions

here. First, our model of the trading day only has five periods. Relatedly, our analysis abstracts
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Figure 9: Order Informativeness for Informed and Uninformed both with β ∼ Tr[N (µ, σ2)] for
times t1 to t2 and parameters α = 0.8, δ = 1.4. The horizontal axis reports E(v|xt1) − E(v) which shows
how the uninformed traders’ Bayesian value-forecast changes with respect to the unconditional expected value of the
fundamental when uninformed traders observe at t1 an equilibrium order xt1 . The vertical axis reports E(v|xt2 , xt1)−
E(v) which shows how the uninformed traders’ Bayesian value-forecast changes with respect to the unconditional
expected value of the fundamental when uninformed traders observe at xt2 at t2. We consider all the equilibrium
strategies at t1 and t2 which are symmetrical. Green (red) circles show equilibrium buy (sell) orders at t2.
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from limit orders being carried over from one day to the next. However, our results about the impact

of adverse selection on investor trading strategies and about order informativeness are driven in

large part by the relative size of information shocks and the tick size rather than by the number

of rounds of trading. In addition, increasing the trading horizon leads to longer histories that are

potentially even more informative. Second, arriving investors are only allowed to submit single

orders that cannot be cancelled or modified subsequently. However, it seems likely that order-flow

histories will still be informative if orders at different points in time are correlated due to correlated

actions of returning investors.
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Figure 10: Dispersion in the price impact of order flow The plot reports maxLtj−1
(E[v|Ltj−1 , xtj ] −

E[v|Ltj−1 , NT ])−minLtj−1
(E[v|Ltj−1 , xtj ]− E[v|Ltj−1 , NT ]) at different times, which shows how the prior order

history affects the marginal price impact of the surprise in a given order. The parameterization is: α = 0.8, δ = 1.6
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4 Conclusions

This paper has studied information aggregation and liquidity provision in dynamic limit order

markets. We show a number of notable theoretical properties in our model. First, informed investors

switch between endogenously demanding liquidity via market orders and supplying liquidity via

limit orders. Second, the information content/price impact of orders can be non-monotone in the

direction of the order and in the aggressiveness of their orders. Third, the information aggregation

process is non-Markovian. In particular, the prior order history has information content beyond

that in the current limit order book.

Our model suggests several directions for future research. Most importantly, our analysis
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provides a framework for empirical research about the changing price impacts of order flow condi-

tional on order-flow history and time of day. There are also promising directions for future theory.

First, the model can be enriched by allowing investors to trade dynamically over time (rather

than just submitting an order one time) and to face quantity decisions and to use multiple orders.

Second, the model could be extended to allow for trading in multiple fragmented limit order mar-

kets. This would be a realistic representation of current equity trading in the US. Third, the model

could be used to study high frequency trading in limit order markets and the effect of different

investors being able to process and trade on different types of information at different latencies.

5 Appendix A: Illustration of order paths and Bayesian updating

This appendix uses an excerpt of the extensive form of the trading game in our model to illus-

trate order-submission and trading dynamics and the associated Bayesian updating process. The

particular trading history path in Figure 11 is from the equilibrium for a model specification in

which informed and uninformed investors both have random private-value motives. The model is

considered in detail in Section 2.2. There are N = 5 rounds of trade, and the parameter values

are κ = 1, σ = 15, α = 0.8, and δ = 1.6. This is a market with a relatively high informed-investor

arrival probability and large value shocks. In this example, Nature has chosen an economic state

in which there is good news (v) about the asset, and the realized sequence of arriving traders over

time is {I, U, U, I, I}. At each node shown here, Figure 11 reports the total book Ltj of limit orders

from both arriving investors and the crowd. Trading starts at t1 with a book [1, 0, 0, 1] consisting of

no orders from informed and uninformed investors (since none have arrived yet) plus the additional

limit orders from the trading crowd (i.e., 1 each at the outside prices A2 and B2). For simplicity,

our discussion here only reports a few nodes of the trading game with their associated equilibrium

strategies. For example, we do not include NT at the end of t1, since Section 2.2 will show that

NT is not an equilibrium action at t1 for these parameters.

Investors in our equilibrium choose from a discrete number of possible orders given their re-

spective information and any private-value trading motives. Along the particular equilibrium path
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considered in this example, the optimal strategies do not involve any randomization. Optimal or-

ders are unique given the inputs. However, orders are random after conditioning on the arriving

investor’s informational type (Iv or U) due to randomness in investors’ private factor β. Figure

11 shows below each order type at each time the probabilities with which the different orders are

submitted by the trader who arrived. For example, if an informed investor Iv arrives at t1, she

chooses a limit order LSA2 to sell at A2 with probability 0.118. Each of these unique optimal

orders is associated with a different range of β types (for both informed and uninformed investors)

and value signals (for informed investors). Figure 2 in the main body of the paper shows an ex-

ample of how order-submission probabilities are determined. At each trading time, as the trading

game progresses along this path, traders submit orders (or do not trade) following their equilibrium

order-submission strategies. The equilibrium execution probabilities of their orders depend on the

order-submission decisions of future traders, which, in turn, depend on their trading strategies

and the input information (i.e., their β realizations, any private knowledge about v, and the order

history path when they arrive). At time t1, the initial trader has rational-expectation beliefs that

the execution probability of her LSA2 order posted at t1 is 0.644.21 This equilibrium execution

probability depends on all of the possible future trading paths proceeding from submission time t1

up through time t5. For example, one possibility is that the LSA2 order will be hit by an investor

arriving at time t2 who submits a market order. Another possibility (which is what happens along

this particular path) is that an uninformed trader will arrive at t2 and post a limit order LSA1

to sell at A1, thereby undercutting the earlier LSA2 order — so that the book at the end of t2

is [2, 1, 0, 1]). In this scenario, the initial LSA2 order from t1 will only be executed provided that

the LSA1 order submitted at t2 is executed first. For example, the probability of a market order

MBA1 hitting the limit order at A1 at t3 is 0.365, and then the probability of another market order

hitting the initial limit sell at A2 is 0.423 at t4 and 0.505 at t5.22 Therefore, there is a chance that

the LSA2 order from t1 will still be executed even after it is undercut by the order LSA1 at t2.

The path in Figure 11 also illustrates Bayesian updating in the model. After the investor

21Some of the numerical values discussed here are from equilibrium calculations reported in more detail in Tables
?? and ?? and Table B2 in Appendix B. Others are unreported calculations available from the authors upon request.

22Due to space constraints, we do not include the t4 node in Figure 11.
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at t1 has been observed submitting a limit order LSA2, the uninformed trader who arrives in

this example at time t2 — who just knows the submitted order at time t1 but not the identity

or information of the trader at time t1 — updates his equilibrium conditional valuation to be

E[ṽ|LSA2] = 10.558 and his execution-contingent expectation given his limit order LSA1 at time

t2 to be E[ṽ|LSA2, θ
LSA1
t2

] = 10.639. In subsequent periods, later investors observe additional

realized orders and then further update their beliefs.
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Figure 11: Excerpt of the Extensive Form of the Trading Game. This figure shows one
possible trading path of the trading game with parameters α = 0.8, δ = 1.6, µ = 10, σ = 15, κ = 1, and 5 time
periods. Before trading starts at time t1, the incoming book [1, 0, 0, 1] from time t0 consists of just the initial limit
orders from the crowd at A2 and B2. Nature selects a realized final value v = {v̄, v0, v} with probabilities { 1

3
, 1

3
, 1

3
}.

At each trading period nature also selects an informed trader (I) with probability α and an uninformed trader (U)
with probability 1−α. Arriving traders choose the optimal order at each period which may potentially include limit
orders LSAi (LBBi) or market orders at the best ask, MBAi,t, or at the best bid, MSBi,t. Below each optimal
trading strategy we report in italics its equilibrium order-submission probability. Boldfaced equilibrium strategies
and associated states of the book (within double vertical bar) indicate the states of the book that we consider at each
node of the chosen trading path.
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6 Appendix B: Algorithm for computing equilibrium

The computational problem to solve for a Perfect Bayesian Nash equilibrium in our model (as

defined in Section 1.1) is complex. Given investors’ equilibrium beliefs, the optimal order-submission

problems in (6) and (7) require computing limit-order execution probabilities and stock-value ex-

pectations that are conditional on both the past order history and on future state-contingent limit-

order execution at each time tj at each node of the trading game. For an informed trader (who

knows the asset value v), there is no uncertainty about the payoff of a market order. In contrast, the

payoff of a market order for an uninformed trader entails uncertainty about the future asset value

and, therefore, computing the optimal order requires computing the expected stock value E[v|Ltj−1 ]

conditional on the prior trading history up to time tj . For limit orders, the expected payoff depends

on the future limit-order execution probabilities, Pr(θxtj |v,Ltj−1) and Pr(θxtj |Ltj−1), for informed

and uninformed investors, which depend, in turn, on the optimal order-submission probabilities of

future informed and uninformed investors. In addition, the uninformed investors’ learning problem

for limit orders requires uninformed investors to extract information about the expected future

stock value E[v|Ltj−1 , θ
x
tj ] from both the past trading history and also from state-contingent future

order execution given that the future states in which limit orders are executed are correlated with

the stock value. Thus, optimal actions at each time tj depend on past information and future

order-flow contingencies where future orders also depend on the then-prior histories at future dates

(which include the action at time tj) as traders dynamically update their equilibrium beliefs as the

trading process unfolds. Thus, the learning problem for limit order beliefs is both backward- and

forward-looking. Lastly, rational expectations (RE) involves finding a fixed point so that the equi-

librium beliefs underlying the optimal order-submission strategies are consistent with the execution

probabilities and value expectations that the endogenous optimal strategies produce in equilibrium.

Our numerical algorithm uses backward induction to solve for optimal order strategies given a

set of asset-value beliefs for all dates and nodes in the trading game and uses an iterative recursion

to solve for RE equilibrium asset-value and order-execution beliefs. The backward induction makes

order-execution probabilities consistent with optimal future behavior by later-arriving investors. It
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also takes future state-contingent execution into account in the uninformed investors’ beliefs. Given

a set of history-contingent asset-value probability beliefs, we start at time t5 — when traders only

use market orders which allows us to compute the execution probabilities of limit orders at t4 —

and recursively solve the model for optimal order strategies back to time t1. We then embed the

optimal order strategy calculation in an iterative recursion to solve for a fixed point for the RE

asset-value beliefs. For a generic round r in this recursion, the outgoing asset-value probabilities

πv,r−1
tj

from round r−1 are used iteratively as incoming asset-value beliefs in round r. In particular,

these beliefs are used in the learning problem of the uninformed investor to extract information

about the ending asset value v from the prior trading histories. They also affect the behavior

of informed investors whose order-execution probability beliefs depend in part on the behavior

of uninformed traders. Thus, the recursion for a generic round r involves solving by backward

induction for optimal strategies for buyers

max
x∈Xtj

wI, r(x | v,Ltj−1) = [v0 + ∆ + βtj − p(x)]Prr(θxtj | v,Ltj−1) (16)

and

max
x∈Xtj

wU, r(x |Ltj−1) = [v0 + Er[∆ |Ltj−1 , θ
x
tj ] + βtj − p(x)]Prr(θxtj |Ltj−1) (17)

where

Er[∆|Ltj−1 , θ
x
tj ] = (π̂v̄, rtj

v̄ + π̂v0, r
tj

v0 + π̂
v, r
tj
v)− v0 (18)

π̂v, rtj
=

Prr(θxtj |v,Ltj )

Prr(θxtj |Ltj )
πv, r−1
tj

(19)

and where the calculations for sellers are symmetric. Note that at each time tj the backward

induction has already determined the future contingencies θxtj for limit order executions at times t >

tj . Thus, the order-execution probabilities Prr(θxtj | v,Ltj−1) and Prr(θxtj |Ltj−1), and the history-

and execution-contingent probabilities π̂v, rtj
and associated asset-value expectations Er[∆|Ltj−1 , θ

x
tj ]

are “mongrel” moments in that they are computed using the outgoing history-contingent asset value
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beliefs πv, r−1
tj

from round r−1 and then updated given the order-execution contingencies computed

by backward induction in round r using the round r− 1 asset-value beliefs. At the end of round r,

we then compute updated outgoing asset-value beliefs πv,rtj for round r, which are used as incoming

beliefs for the next round r + 1. The recursion is iterated to find a RE fixed point πvtj in the

uninformed investor beliefs.

The fixed-point recursion is started in round r = 1 by setting the initial asset-value beliefs πv,0tj

of uninformed traders at each time tj in the backward induction to be the unconditional priors

Pr(v) in (1). In particular, the algorithm starts by ignoring conditioning on history in the initial

round r = 1. Hence the traders’ optimization problems in (17) and (16) in round r = 1 simplify to:

max
x∈Xtj

wI,r=1(x | v,Ltj−1) = [v0 + ∆ + βtj − p(x)]Pr1(θxtj | v) (20)

max
x∈Xtj

wU,r=1(x |Ltj−1) = [v0 + E1[∆|θxtj ] + βtj − p(x)]Pr1(θxtj ) (21)

The order-execution contingencies in round r are modeled as follows: In each round r given

the asset-value beliefs πv,r−1
tj

in that round, we solve for investors’ optimal trading strategies by

backward induction. Starting at t5, the execution probability for new limit orders is zero, and

therefore optimal order-submission strategies only use market orders. Given the linearity of the

expected payoffs in the private-value factor β in (16) and (17), the optimal orders for an informed

trader at t5 are23

xI,rt5 (β|Lt4 , v) =


MSBi,t5 if β ∈ [0, β

MSBI,r
i,t5

,NT I,r
t5 )

NT if β ∈ [β
MOBI,r

i,t5
,NT I,r

t5 , β
NT I,r

t5
,MBAI,r

i,t5 )

MBAi,t5 if β ∈ [β
NT I,r

t5
,MBAI,r

i,t5 , 2]

(22)

23For instance, an informed trader would post a MBA1 only if the payoff is positive and thus outperforms the NT
payoff of zero, i.e, βv + ∆−A1 > 0 or β > A1−∆

v
.
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where for each possible combination of MSBi,t5 = MSB1,MSB2 and MBAi,t5 = MBA1,MBA2

β
MSBI,r

i,t5
,NT I,r

t5 =
Bi,t5 −∆

v
(23)

β
NT I,r

t5
,MBAI,r

i,t5 =
Ai,t5 −∆

v

are the critical thresholds that solve wI,r(MSBi,t5 |v,Lt4) = wI,r(NT |v,Lt4) and wI,r(NT |v,Lt4) =

wI,r(MBAi,t5 |v,Lt4), respectively. Our notation here for market orders differs slightly from the

notation in the body of the paper because we need to denote both different possible price levels

and the time at which different possible orders are being compared. The optimal trading strategies

and β thresholds for an uninformed traders are similar but the conditioning set does not include

the asset value v:

xU,rt5 (β|Lt4) =


MSBi,t5 if β ∈ [0, β

MSBU,r
i,t5

,NTU,r
t5 )

NT if β ∈ [β
MSBU,r

i,t5
,NTU,r

t5 , β
NTU,r

t5
,MBAU,r

i,t5 )

MBAi,t5 if β ∈ [β
NTU,r

t5
,MBAU,r

i,t5 , 2]

(24)

where

β
MSBU,r

i,t5
,NTU,r

t5 =
Bi,t5 − Er−1[∆|Lt4 ]

v
(25)

β
NTU,r

t5
,MBAU,r

i,t5 =
Ai,t5 − Er−1[∆|Lt4 ]

v

Given the β ranges associated with each possible action at t5, we compute the submission

probabilities associated with each optimal order at t5 using the truncated-Normal density n(·) for

the private factor β.24 At time t4 these are the execution probabilities for new limit orders by an

informed investor at the different possible best bids and asks, Bi,t4 and Ai,t4 respectively at time

24The discussion here is for the case where both informed and uninformed investors have random private factors β.
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t5:

Prr(θLBBi
t4

|Lt3 , v) =

 α
[ ∫ βMSB

I,r
i,t5

,NT
I,r
t5

0 n(β) dβ
]

+
(

1− α
)[ ∫ βMSB

U,r
i,t5

,NT
U,r
t5

0 n(β)dβ
]

0 otherwise

(26)

Prr(θLSAi
t4
|Lt3 , v) =


α
[ ∫ 2

β
NT

I,r
t5

,MBA
I,r
i,t5

n(β) dβ
]

+
(

1− α
)[ ∫ 2

β
NT

U,r
t5

,MBA
U,r
i,t5

n(β) dβ
]

0 otherwise

(27)

where the book is either empty at A1 and/or B1 (but may have non-crowd limit orders at the

outside prices) or is empty except for just crowd orders at A2 and B2. The analogous execution

probabilities for an uninformed investor arriving at time t4 are:

Prr(θLBBi
t4

|Lt3) =

 α
[∑

v∈{v,v0,v} π̂
v,r
t4

∫ βMSB
Iv,r
i,t5

,NT
Iv,r
t5

t5
0 n(β) dβ

]
+
(

1− α
)[ ∫ βMSB

U,r
i,t5

,NT
U,r
t5

t5
0 n(β) dβ

]
0 otherwise

(28)

Prr(θLSAi
t4
|Lt3) =


α
[∑

v∈{v,v0,v} π̂
v,r
t4

∫ 2

β
NT

Iv,r
t5

,MBA
Iv,r
i,t5

n(β) dβ
]

+
(

1− α
)[ ∫ 2

β
NT

U,r
t5

,MBA
U,r
i,t5

n(β) dβ
]

0 otherwise

(29)

At t4 there is only one period before the end of the trading game. Thus, the execution probability

of a limit order is positive if and only if the order is posted at the best price on its own side of

the market (Ai,t4 or Bi,t4), and if there are no non-crowd limit orders already standing in the limit

order book at that price at the time the new limit order is posted.

Having obtained the execution probabilities in (26) – (29) for the different limit orders at t4, we

next derive the optimal order-submission strategies at t4. The incoming book can be configured in

many different ways at t4 depending on the different possible prior order paths Lt3 in the trading

game up through time t3. As the payoffs of both limit and market orders are functions of β, we

rank all the payoffs of adjacent optimal strategies in terms of β and equate them to determine the
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β thresholds at time t4.25 Consider, for example, an order path such that t4 has only crowd orders

in the book, so that new limit and market orders are both potentially optimal orders at t4. For an

informed trader, the the optimal orders are given by:

xI,rt4 (β|Lt3 , v) =



MSB2 if β ∈ [0, β
MSBI,r

2,t4
,LSAI,r

1,t4 )

LSA1 if β ∈ [β
MSBI,r

2,t4
,LSAI,r

1,t4 , β
LSAI,r

1,t4
,LSAI,r

2,t4 )

LSA2 if β ∈ [β
LSAI,r

1,t4
,LSAI,r

2,t4 , β
LSAI,r

2,t4
,NT I,r

t4 )

NT if β ∈ [β
LSAI,r

2,t4
,NT I,r

t4 , β
NT I,r

t4
,LBBI,r

2,t4 )

LBB2 if β ∈ [β
NT I,r

t4
,LBBI,r

2,t4 , β
LBBI,r

2,t4
,LBBI,r

1,t4 )

LBB1 if β ∈ [β
LBBI,r

2,t4
,LBBI,r

1,t4 , β
LBBI,r

1 ,MBAI,r
2,t4 )

MBA2 if β ∈ [β
LBBI,r

1,t4
,MBAI,r

2,t4 , 2]

(30)

and for an uninformed trader the optimal strategies are qualitatively similar but with different

values for the β thresholds given the uninformed investor’s different information.26 As the payoffs

of both limit and market orders are functions of β, we can rank all the payoffs of adjacent optimal

strategies in terms of β and equate them to determine the β thresholds at t4. For example, for the

first β threshold we have:

β
MSBI,r

2,t4
,LSAI,r

1,t4
t4

= β ∈ R s.t. wI,rt4 (MSB2 | v, β,Lt3) = wI,rt4 (LSA1 | v, β,Lt3) (31)

and we obtain the other thresholds similarly.

The next step is to use the β thresholds together with the truncated Normal cumulative dis-

tribution N(�) for β to derive the probabilities of the optimal order-submission strategies at each

possible node of the extensive form of the game at t4. For example, the submission probability of

LSAI,r1 is:

Prr[LSAI,r1 |Lt3 , v] = N(βLSA
I,r
1 ,LSAI,r

2 |Lt3 , v)− N(βMSBI,r
2 ,LSAI,r

1 |Lt3 , v) (32)

25Recall that the upper envelope only includes strategies that are optimal.
26If the incoming book from t3 has non-crowd orders on any level of the book, the equilibrium strategies would

be different. For example, if the book has a LSA1 limit order, then new limit orders on the ask side cannot be
equilibrium orders since their execution probability would be zero.
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and the submission probabilities of the equilibrium strategies can be obtained in a similar way.

Next, given the market-order submission probabilities at t4 — which together with the execution

probabilities at t5 determine the execution probabilities for new limit orders at time t3 — we

can solve the optimal orders at t3 and then recursively continue to solve the model by backward

induction in this fashion back to time t1.

Off-equilibrium beliefs: At each time tj , round r of the recursion needs history-contingent

asset-value beliefs πv,r−1
tj

= Prr−1(v|Ltj ) from round r − 1 for all feasible paths that traders may

use. Beliefs for paths that occur with positive probability in round r − 1 are computed using

Bayes’ rule to update the probability Prr−1(v|Ltj−1) of the time-tj−1 sub-path Ltj−1 that path

Ltj extends. In contrast, Bayes’ Rule cannot be used to update probabilities of paths that involve

orders that are not used with positive probability in round r − 1. Our algorithm deals with this

by setting Prr−1(v|Ltj ) to be Prr−1(v|Lt) where Lt is the longest positive-probability sub-path

from t0 to some time t < tk in round r − 1 that is contained in path Ltj . For example, consider

a path {MBA2,MSB2, LSA1} at time t3 where orders {MBA2,MSB2} are used with positive

probability at times t1 and t2 in round r − 1, but LSA1 is not used at time t3 after the first two

orders in round r − 1. Our recursion algorithm sets the round r − 1 belief uninformed traders use

for path {MBA2,MSB2, LSA1} to be their round r−1 belief for the positive-probability sub-path

{MBA2,MSB2}. If instead MSB2 is not a positive-probability order at t2 in round r−1, then we

assume that uninformed traders use their belief at t1 conditional on the shorter sub-path {MBA2}.

Finally, if MBA2 is also not a positive-probability order at t1 in round r− 1, then we assume that

traders use their unconditional prior belief Pr(v).

Mixed strategies: We allow for both pure and mixed strategies in our Perfect Bayesian Nash

equilibrium. When different orders have equal expected payoffs, we assume that traders randomize

with equal probabilities across all such optimal orders. By construction, the expected payoffs of

two different strategies are the same in correspondence of the β thresholds; however because we are

considering single points in the support of the β distribution, the probability associated with any

strategy that corresponds to those specific points is equal to zero. This means that mixed strategies
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that emerge in correspondence of the β thresholds, although feasible, have zero probability. Mixed

strategies may also emerge in the framework in which informed traders have a fixed neutral private-

value factor β = 0 (section 2.1). More specifically it may happen that the payoffs of two perfectly

symmetrical strategies of Iv0 are the same, and in this case Iv0 randomizes between these two

strategies.

In the setting of our model where informed traders have fixed neutral private-value factors

β = 0, it may happen that both informed and uninformed traders switch their strategies back and

forth from one round to the next. When this happens, to reach an equilibrium we assume that

the informed traders play mixed strategies and at each subsequent round strategically reduce the

probability with which they choose the most profitable strategy until the equilibrium is reached. As

an example at t1 informed traders with positive news, Iv̄, play LBB2 in round r = 1. However, in

round r = 2 in the subsequent periods uninformed traders do not send market orders to sell at B2

and in round r = 3, informed traders react by changing their strategy to LBB1. However, in the

subsequent periods uninformed traders do not send market orders to sell, this time at B1. To find

an equilibrium, we assume that at each round informed traders play mixed strategies and assign

a greater weight to the most profitable strategy. In this case we assume they start playing LBB2

with probability 0.99 and LBB1 with probability 0.01. If these mixed strategies do not lead to

an equilibrium outcome, in the subsequent round we assume that the informed traders play LBB2

with probability 0.98 and LBB1 with probability 0.02. We proceed by lowering the probability

with which informed traders choose the most profitable strategy until we reach an equilibrium set

of strategies.

Convergence: RE beliefs for a Perfect Bayesian Nash equilibrium are obtained by solving the

model recursively for multiple rounds. In particular, the asset-value probabilities πv,1tj from round

r = 1 from above are used as the priors to solve the model in round r = 2 (i.e., the round 1

probabilities are used in place of the unconditional priors used in round 1).27 The asset-value

probabilities πv,2tj from round r = 2 are then used as the priors in round r = 3 and so on. The

recursive iteration is continued until the updating process converges to a fixed point, which are the

27In the second round of solutions we again solve the full 5-period model.
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RE beliefs. In particular, the recursive process has converged to the RE beliefs when uninformed

traders no longer revise their asset-value beliefs. Operationally, we consider convergence to the RE

beliefs to have occurred when the probabilities πv, rtj
, πv0, r

tj
and π

v, r
tj

in round r are “close enough”

to the corresponding probabilities from round r − 1:

πv, ∗tj when
∣∣∣πv, rtj

− πv, r−1
tj

∣∣∣ < 10−7

πv0, ∗
tj

when
∣∣∣πv0, r
tj
− πv0, r−1

tj

∣∣∣ < 10−7

π
v, ∗
tj

when
∣∣∣πv, rtj

− πv, r−1
tj

∣∣∣ < 10−7

(33)

A fixed-point solution to this recursive algorithm is an equilibrium in our model.

7 Appendix C: Additional numerical results

The tables is this section provide additional information on the execution probabilities of limit

orders for informed investor with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv
¯
) and for unin-

formed traders. The tables also report the asset value expectations of the uninformed investor at

time t2 after observing all the possible buy orders submissions at time t1. The expectations for sell

orders are symmetric with respect to 1. Table B1 reports results for our first model specification

in which only uninformed traders have a random private value factor. Table B2 reports results for

our second model in which both the informed and uniformed traders have private-value motives.
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Table B1: Order Execution Probabilities and Asset-Value Expectation for Informed Traders with
β = 0 and Uninformed Traders with β ∼ Tr[N (µ, σ2)]. This table reports results for two different values of
the informed-investor arrival probability α (0.8 and 0.2) and for two different values of the asset-value volatility δ (1.6
and 0.2). σ = 15. For each set of parameters, the first four columns report the equilibrium limit order probabilities
of executions for informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders

(U). The fifth column (Uncond.) reports the unconditional order-execution probabilities in the market. Next, the
columns report conditional and unconditional future order execution probabilities and the asset-value expectations
of an uniformed investor at time t2 after observing different order submissions at time t1.

δ = 1.6 (top) or 1.4 (bottom) δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

PEX(LSA2|·) 0.962 0.204 0.053 0.406 0.406 0.180 0.229 0.170 0.193 0.193
PEX(LSA1|·) 0.999 0.131 0.078 0.403 0.403 0.323 0.323 0.323 0.323 0.323
PEX(LBB1|·) 0.078 0.131 0.999 0.403 0.403 0.323 0.323 0.323 0.323 0.323
PEX(LBB2|·) 0.053 0.204 0.962 0.406 0.406 0.170 0.229 0.180 0.193 0.193

α = 0.8
E[v|LBB1 |·] 11.600 10.000
E[v|LBB2 |·] 10.835 10.130
E[v|MBA1 |·]
E[v|MBA2 |·] 10.000 10.000

PEX(LSA2|·) 0.563 0.490 0.402 0.485 0.485 0.514 0.499 0.476 0.496 0.496
PEX(LSA1|·) 0.872 0.772 0.735 0.793 0.793 0.792 0.792 0.790 0.791 0.791
PEX(LBB1|·) 0.735 0.772 0.872 0.793 0.793 0.790 0.792 0.792 0.791 0.791
PEX(LBB2|·) 0.402 0.490 0.563 0.485 0.485 0.476 0.499 0.514 0.496 0.496

α = 0.2
E[v|LBB1 |·] 10.245 10.000
E[v|LBB2 |·] 10.000 10.089
E[v|MBA1 |·]
E[v|MBA2 |·] 10.000 10.000
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Table B2: Order Execution Probabilities and Asset-Value Expectation for Informed and Uninformed
Traders both with β ∼ Tr[N (µ, σ2)]. This table reports results for two different values of the informed-investor
arrival probability α (0.8 and 0.2) and for two different values of the asset-value volatility δ (1.4 and 0.2). σ = 15.
For each set of parameters, the first four columns report the equilibrium limit order probabilities of executions for
informed traders with positive, neutral and negative signals, (Iv̄,Iv0 ,Iv

¯
) and for uninformed traders (U). The fifth

column (Uncond.) reports the unconditional order-execution probabilities in the market. Next, the columns report
conditional and unconditional future order execution probabilities and the asset-value expectations of an uniformed
investor at time t2 after observing different order submissions at time t1.

δ = 1.4 δ = 0.2

Iv̄ Iv0 Iv
¯

U Uncond. Iv̄ Iv0 Iv
¯

U Uncond.

PEX(LSA2|·) 0.625 0.498 0.419 0.514 0.514 0.502 0.487 0.472 0.487 0.487
PEX(LSA1|·) 0.906 0.834 0.720 0.820 0.820 0.849 0.837 0.824 0.836 0.836
PEX(LBB1|·) 0.720 0.834 0.906 0.820 0.820 0.824 0.837 0.849 0.836 0.836
PEX(LBB2|·) 0.419 0.498 0.625 0.514 0.514 0.472 0.487 0.502 0.487 0.487

α = 0.8
E[v|LBB1 |·] 9.970 10.003
E[v|LBB2 |·] 9.558 9.988
E[v|MBA1 |·]
E[v|MBA2 |·] 11.400

PEX(LSA1|·) 0.519 0.492 0.471 0.494 0.494 0.490 0.487 0.483 0.487 0.487
PEX(LSA1|·) 0.851 0.834 0.816 0.834 0.834 0.839 0.837 0.834 0.837 0.837
PEX(LBB1|·) 0.816 0.834 0.851 0.834 0.834 0.834 0.837 0.839 0.837 0.837
PEX(LBB2|·) 0.471 0.492 0.519 0.494 0.494 0.483 0.487 0.490 0.487 0.487

α = 0.2
E[v|LBB1 |·] 10.024 10.001
E[v|LBB2 |·] 9.967 9.999
E[v|MBA1 |·]
E[v|MBA2 |·] 11.400
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Roşu, Ioanid, 2016a, Fast and slow informed trading, Working Paper, HEC.
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