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cUniversité catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering, 1348 Louvain–la–Neuve, Belgium

Abstract

What is the effect of high frequency trading on the information content of call auction prices? To answer this

question, we model a transparent electronic call market where High Frequency and Non High Frequency

Traders (HFTs and NON HFTs) coexist. Because of their increased processing power and their ability

to access multiple data streams within very short time intervals, HFTs have more precise information on

fundamentals compared to NON HFTs and, thus, their bidding activity accelerates price efficiency. However,

when HFTs behave strategically, considering the impact of their quotes on the market, price efficiency

deteriorates. Subsequently, we test the predictions of our model regarding the effect of HFTs on call auction

price efficiency, using a data set that includes a unique HFT flag for order and trade messages for the NYSE

Euronext Paris opening call. Our results indicate that orders submitted by HFTs are more informative

compared to those placed by NON HFTs. Moreover, early in the preopening, HFTs act strategically by

submitting orders which they later (prior to opening) adjust or cancel. On the other hand, just before the

opening, HFTs increase competition sharply by submitting large, aggressive and more informative orders

with the intention of having them filled. Consequently, market prices are less informative early in the

preopening, whereas they reflect information at the open. Our empirical results indicate that HFTs lead

the price discovery process in the Paris market.

Keywords: High Frequency Trading, Call Auction, Rational Expectations, Price Efficiency

JEL Classification: G1, G14

∗Corresponding author
Email addresses: panagiotis.anagnostidis@eurofidai.org (Panagiotis Anagnostidis),

patrice.fontaine@eurofidai.org (Patrice Fontaine), christos.varsakelis@sabic.com (Christos Varsakelis)



1 Introduction

In the past decade, a burst of algorithmic and high frequency trading activity has been evidenced in

financial markets. This is mainly attributed to i) the ever-increasing computational power that has rendered

the implementation of order placement strategies at ultra–high speeds (e.g., millisecond accuracy) feasible,

and ii) the improvement of electronic network communication systems in terms of speed, accessibility and

quality that has allowed investors to collect accurate information about fundamentals and, thus, to enhance

their risk assessment process and to increase their profits from trade. Nowadays, a substantial proportion

of total volume of transactions in electronic markets (e.g., stock, currency and commodity markets) is

triggered by High Frequency Trading programs (hereafter referred to, also, as HFTs). HFTs receive market

information, analyze it and, subsequently, submit, adjust or cancel orders into the electronic system, aiming

for capital gain opportunities that arise from temporal asset price movements. Moreover, algorithmic trading

is often used by investors and fund managers as a means of reducing the cost of trading, via the application

of ‘slice and dice’ techniques, as well as by market makers for various order handling and liquidity supply

services (Brogaard, 2010; Jovanovic and Menkveld, 2016; Hendershott et al., 2011; Chlistalla, 2012; O’Hara,

2015; Foucault et al., 2016; Serbera and Paumard, 2016).

The presence of HFTs and their coexistence with Non High Frequency Traders (hereafter referred to,

also, as NON HFTs) have raised important questions regarding the efficiency and the stability of financial

markets. Even though a consensus on the role of HFTs has not been reached, several pros and cons have been

identified thus far. As regards the positive contribution, there exists evidence that HFTs reduce transaction

costs and improve information speed and price efficiency, while enhancing liquidity through their ability to

provide simultaneous access to interlinked electronic trading platforms (Hasbrouck and Saar, 2013; Conrad

et al., 2015). On the negative side, it is argued that the presence of HFTs may increase the possibility

of abnormal price variations, through the rapid dissemination of quotes, or, even worse, of market failures

(e.g., flash crashes) (Huang and Wang, 2009; Madhavan, 2012; Hasbrouck and Saar, 2013; Chordia et al.,

2013; Kirilenko et al., 2017).

Literature on HFTs is quite extensive but almost exclusively concerns the continuous double auction

mechanism.1 A possible explanation for this focus stems from the fact that the main continuous session is

rather attractive for HFTs, as they are able to take advantage of their speed to exploit arbitrage opportunities

that arise within very short time intervals, often on the expense of slower and less informed traders (Biais

et al., 2015). However, since most efforts have been devoted to the continuous double auction, there is

1Section 2 presents a detailed review of the literature on HFTs.
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a notable dearth of studies for the second most important trading mechanism in organized markets, the

single call auction. Consequently, relevant questions concerning the incentive of HFTs to participate in call

auctions as well as their subsequent effect on price quality remain open.

The present study constitutes a step towards closing this gap in the literature by investigating first

theoretically and then empirically the effect of HFTs on the informativeness of prices generated from the

single call auction. The call auction mechanism differs from the continuous double auction in that orders

are aggregated during a specific time period while trading is absent, whereas clearing takes place at a

single auction price and at a predetermined point in time. To this extent, the single call is often adopted by

Exchanges as an efficient mechanism in aggregating disperse information about fundamentals after extended

periods of no trade (e.g., preopening) or after periods of higher volatility (e.g., trading halts); see, for

example, Economides and Schwartz (1995). Our study investigates the presence of HFTs in such a trading

environment and, in particular, it examines the effect of HFTs’ order placement strategies on market price

quality.

To model the clearing market, we develop a theoretical framework based on the notion of noisy rational

expectations equilibria (Grossman and Stiglitz, 1976; Grossman, 1976; Grossman and Stiglitz, 1980; Hellwig,

1980; Admati, 1985; Madhavan and Panchapagesan, 2000). In our analysis, a finite number of uninformed,

privately informed and liquidity traders participate in a transparent automated call auction market.2 Thus,

all traders have access to the market price, while market makers are absent.3 Although this paradigm is

classical, our theoretical framework differentiates from the state of the art in certain ways.

First, we introduce two types of privately informed traders: slow (human) and fast HFTs (machines).

Each trader in the former group possesses a private signal about fundamentals as in the traditional rational

expectations framework (Grossman and Stiglitz, 1980). Members of the second group, HFTs, view the same

private signal as human informed traders but with greater precision, due to their ability to collect and

process information over multiple data streams and electronic trading networks. This assumption implies

that HFTs may have an incentive to participate in the call market not because of their increased order

processing speed, but due to their informational advantage. Indeed, because bidding is only theoretical until

the clearing time, momentum fast trading is significantly limited in the call auction mechanism. Thus, it

is reasonable to assume that HFTs may enter the call market to profit from their private signals, without

2Because call auctions are less popular compared to continuous trading, herein we do not opt for a continuum of traders
(Aumann, 1964) but rather a finite set of traders. By doing so, we differentiate from the bulk of related microstructure studies
where a continuum of traders is preferred; see, for instance, Vives (1995), Cespa and Foucault (2013) and Biais et al. (2015).

3In Vives (1995), for example, competitive market makers set the clearing price by observing the order flow.

3



necessarily being ultra–fast.4 Our approach is close to that of Cespa and Foucault (2013) and Easley et al.

(2016) who consider different types of informed traders depending on their decision to invest in obtaining

access to market data (e.g., realized transaction prices). In our model, however, informed traders are

endowed exogenously with private signals of different precision, whereas all traders observe the market price

that is publicly available. Further, uninformed traders view the market price as a weighted average of the

private signals of the two types of informed traders and the amount of noise trading. Hence, in equilibrium,

the belief of uninformed traders about the private signals of HFTs and human informed traders plays a

significant role in the price formation process.

Second, herein we assume that HFTs can behave strategically, considering the impact of their bids on

the market price (e.g., Kyle, 1985). This assumption is in line with one of the well–documented properties of

HFTs, the implementation of frequent submit–cancel strategies (e.g., O’Hara, 2015). However, in a market

with a finite number of traders, as the one considered herein, liquidity can be limited and, thus, prices can

be more sensitive to significant supply–demand swifts. Thus, when agents place their bids strategically,

additional noise is induced into prices. To incorporate the effect of strategic trading into our model, we

add a price elasticity term in the standard Grossman and Stiglitz (1980) framework, as in Rindi (2008) and

Kovalenkov and Vives (2014). Our choice is consistent with the analysis of Kovalenkov and Vives (2014)

who show that, when the number of market participants is small, a competitive equilibrium can be utilized

as an approximation of the true strategic equilibrium only when agents are risk averse but not close to risk

neutral. Otherwise, considering a pure competitive equilibrium (i.e., as in Grossman and Stiglitz (1980))

can be problematic.

Several of our model predictions are qualitatively similar to those of the competitive model of Grossman

and Stiglitz (1980). Price efficiency improves with the number of informed traders in the market increased.

Also, noise trading and the magnitude of risk aversion are inversely correlated with price efficiency.

Regarding HFTs, when they are present in the market price efficiency improves significantly faster

compared to a market of slow traders; this is due to the increased information content of HFTs’ quotes.

The model predicts, also, that when uninformed traders form their expectations by considering the accuracy

of HFTs’ signals more promptly, compared to the precision of human informed traders, price efficiency

improves. On the other hand, when uninformed traders form their expectations by placing more weight on

human informed traders’ signals, prices are more noisy. The aforementioned predictions are valid to the

4Bellia et al. (2017), for example, find that HFTs earn profits from orders executed at the opening auction in the Paris
market. Further, the authors attribute this finding to the fact that HFTs are able to collect information from various data
sources, thus forming more precise signals on fundamentals compared to the rest of the trading public.
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extent that market participants do not behave strategically. In this respect, we show that price efficiency is

inversely correlated with the price elasticity factor for the two types of informed traders (HFTs and NON

HFTs). Hence, when traders become strategic, price efficiency deteriorates significantly.

In the empirical part, we contribute to the literature on call auction mechanisms by providing insight on

the behavior of HFTs in the preopening period of the Euronext Paris opening call. We employ a unique set

of high frequency data that includes the entire trading and order placement history for the CAC 40 stocks

in year 2013. A significant advantage of the database used in the present study is that it includes flagged

messages that pertain to HFT activity, proxied by the ratio of individual order lifetime over the average

order lifetime for order cancellations.5 Therefore, we are able to distinguish directly between HFTs and

NON HFTs.

For the purposes of our analysis we re–construct the order book and calculate preopening indicative

prices and opening prices on the basis of: i) the full set of order messages, that is the actual market or, else,

the ‘Full order book’, ii) the HFT set of order messages which we term as the ‘HFT market’ or the ‘HFT

order book’ and iii) the set of messages related to the bidding activity of NON HFTs which, accordingly, we

term as the ‘NON HFT market’ or the ‘NON HFT order book’. By doing so, we opt to disentangle HFT

from NON HFT activity and, in turn, to compare the informativeness of quotes placed by the two types

of traders.6 We examine empirically the information content of the re–constructed indicative and auction

prices using the Weighted Price Contribution (WPC) statistic, originally introduced by Barclay and Warner

(1993) in their study of NYSE, together with the unbiasedness regression technique proposed by Biais et al.

(1999) in their analysis of the Paris opening auction. The former measures the amount of price discovery

during the trading process, whereas the latter provides an estimation of the information content of prices,

which is the main focus of our study.7

We find evidence that HFTs contribute significantly to price efficiency a few minutes before the opening

by increasing their participation in the order accumulation process. To this extent, HFTs tend to submit

aggressive and large orders with the intention of having them executed. These results are consistent with

our model prediction that price efficiency is positively correlated with the number of HFTs in the market.

5The HFT classification is provided by the AMF (Autorité des Marchés Financiers) (see, Megarbane et al. (2017)).
6See, for instance, Madhavan and Panchapagesan (2000) and Anagnostidis et al. (2015) who build different types of order

book states for the preopening of the NYSE and the Athens Exchange, respectively, by isolating market from limit orders.
7The WPC statistic is a widely popular measure of price discovery and it has been applied in several empirical studies in the

past (Cao et al., 2000; Ciccotello and Hatheway, 2000; Barclay and Hendershott, 2003; Ellul et al., 2005; Moshirian et al., 2012;
Anagnostidis et al., 2015; Bellia et al., 2016, 2017). Similarly, the unbiasedness regression methodology is routinely employed
in the call auction literature for the estimation of price informativeness (Madhavan and Panchapagesan, 2000; Ciccotello and
Hatheway, 2000; Barclay and Hendershott, 2003; Comerton-Forde and Rydge, 2006; Moshirian et al., 2012; Anagnostidis et al.,
2015; Boussetta et al., 2016; Baruch et al., 2017).
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Further, we find that HFTs’ orders are more informative compared to those submitted by NON HFTs,

consistent with the main assumption of our model that HFTs are able to form more precise signals, compared

to the rest of the trading public, by processing data from various sources and at extremely high speeds.

Our results indicate, also, that HFTs act strategically when placing their orders; they enter the market

early in the preopening, whereas they modify and/or cancel their quotes aggressively later, just before the

opening. In this respect, we find evidence of a strategic reversal in the bidding behavior of HFTs who tend to

raise indicative prices 10 minutes before the clearing time, causing therefore positive returns, whereas they

increase their selling activity a few minutes before the opening, generating negative returns. Accordingly,

our evidence suggests that prices are rather noisy 10 minutes prior to opening, whereas price efficiency

increases sharply just before the auction. Thus, our results corroborate our model prediction that strategic

quoting (early in the preopening) deteriorates price efficiency, whereas competitive biding (prior to opening)

accelerates it.

The paper is organized as follows: Section 2 provides a review of the literature. Section 3 develops the

analytical framework. Section 4 presents an empirical application on the Paris opening call market. Finally,

Section 5 concludes the paper.

2 Literature review

2.1 High frequency and algorithmic trading

The increasing interest on the effect of HFTs on the quality of financial markets has attracted considerable

attention and has thus resulted in a large and growing body of the microstructure literature that focuses,

mainly, on the continuous double auction mechanism. Although HFTs are frequently labelled as a potential

source of abnormal price movements, there exists evidence that trading by means of machine learning

methods may actually improve market quality. For instance, Brogaard (2010), Hasbrouck and Saar (2013),

Hagströmer and Norden (2013), Carrion (2013) and Brogaard et al. (2014) study the low–latency trading

environment in the NASDAQ market and indicate, collectively, that HFTs accelerate price discovery, reduce

price volatility and enhance the provision of liquidity.

Hendershott et al. (2011) examine empirically the NYSE market and find that the rapid increase of

algorithmic trading during the past decade has narrowed the spreads and reduced adverse selection costs

for traders. Moreover, the authors find that algorithmic trading has improved market liquidity. In the

order–driven setting, Hendershott and Riordan (2013) find that algorithmic trading in the DAX market

improves price efficiency. Similarly, Boehmer et al. (2015) show that algorithmic trading has, on average, a
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positive effect on price efficiency and liquidity in 42 international equity markets around the world (order

and quoted driven systems).

At this point it is pertinent to note that observers often refer to algorithmic trading and high frequency

trading as two equal entities. Nonetheless, HFTs are designed to act, exclusively, within the domain of

millisecond or microsecond accuracy, whereas algorithmic trading machines (also known as ATs) aim, mostly,

to carry out various order handling and liquidity providing strategies on behalf of investors and market

makers, without necessarily being ultra fast. Essentially, high frequency trading is a subset of algorithmic

trading, with emphasis placed both on order handling and execution speed (Chlistalla, 2012).

Although there is ample empirical evidence on the positive effect of HFTs on traditional aspects of market

quality, like liquidity and price efficiency, there are studies suggesting that, under circumstances, HFTs may

contribute to the occurrence of market failures, such as flash crashes, the sharpening of price variations

(e.g., widening of spreads) and the rise of systematic risk. Kirilenko et al. (2017), for example, investigate

the NASDAQ flash crash on May, 2010. The authors show that the emergence of the sharp volatility spike

at 2:45 is significantly related to the fast reaction of HFTs on the rapid depletion of liquidity. Boehmer

et al. (2015) also find that algorithmic trading intensity is positively correlated with price volatility. In a

theoretical paper, Biais et al. (2015) show that high speed connections (i.e., HFTs) enable investors to profit

from trading by searching for desirable quotes at the spot and, by doing so, they impose additional adverse

selection costs on slow traders. Chaboud et al. (2014) study algorithmic data from the EBS electronic

trading system for currency pairs (euro–dollar, dollar–yen and euro–yen). The results of this study suggest

that machine trades are often correlated, giving rise to systematic market risk. Brogaard (2010) investigates

data from the NASDAQ and finds that order flows generated from HFTs are correlated, possibly imposing

additional non–diversifiable (il)liquidity risk on investors’ portfolio selection strategies. Similarly, Jain et al.

(2016) examine the Tokyo Stock Exchange low–latency platform and find evidence that HFTs rise systematic

liquidity risk.

Thus far, the majority of related empirical studies have focused on the continuous trading process in

the US Exchanges, mainly the NASDAQ and the NYSE, whereas order–driven call auction systems have

attracted less attention. From this point of view, the present study aims to shade further light on the

impact of high frequency trading on the quality of automated electronic markets focusing on the call auction

mechanism.
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2.2 Call auction trading

Call auction venues differ significantly from continuous systems in that orders are aggregated without

trading, leading to the emergence of crossed supply–demand schedules. Subsequently, at a pre–specified

point in time, buy and sell orders are matched and executed at a single equilibrium price. Due to their

ability to aggregate disperse information about fundamental values into one single price, call auctions are

typically adopted by Exchanges as ideal trading mechanisms during periods of increased market stress, such

as the opening and the closing.

Because bidding is only theoretical during the order accumulation period, pre–call communication games

may emerge between investors. In particular, the pre–trade period in transparent call mechanisms may

offer a learning environment where investors submit, adjust or cancel their orders by observing the flow of

indicative clearing prices and the dynamics of the prevailing bids and asks. This is the case in the models of

Jordan (1982), Vives (1995) and Biais et al. (1999), where competitive agents (i.e., traders, brokers and/or

market makers) react to the disclosed information and drive the asset price to its equilibrium value. On the

other hand, Medrano and Vives (2001) and Biais et al. (2013) show that the presence of privately informed

strategic traders, who attempt to manipulate the market, may add noise to the price discovery process, thus

slowing down the speed of information. Also, Madhavan and Panchapagesan (2000) show that the presence

of liquidity traders may add noise to the price discovery process, through the submission of aggressive price–

inelastic orders (e.g., market orders). Our theoretical analysis contributes to the aforementioned literature

by considering the effect of HFTs in the call market.

Information revelation and price discovery in the call auction mechanism have been studied empirically

in several studies in the past. Ciccotello and Hatheway (2000), Cao et al. (2000), Barclay and Hendershott

(2003), Barclay and Hendershott (2008) and Pagano et al. (2013) investigate the NASDAQ dealers’ market

opening. Madhavan and Panchapagesan (2000) examine the NYSE opening procedure and the role of

specialists in price discovery and price efficiency. In the order–driven trading framework, Biais et al. (1999)

and Pagano and Schwartz (2003) and Hillion and Suominen (2004) analyze the opening and the closing

auctions of the Euronext Paris stock market, respectively. Comerton-Forde and Rydge (2006) and Moshirian

et al. (2012) study the opening and closing auctions in the Australian order–driven stock market. Hauser

et al. (2012) examine the behavior of opening prices in the Tel Aviv Stock Exchange after the introduction

of a random opening time, while Kalay et al. (2004) investigate, in the same market, the elasticity of clearing

prices during the preopening period. Lastly, Anagnostidis et al. (2015) analyze the opening price discovery

process in the Greek order–driven market. The aforementioned empirical studies indicate, altogether, the
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importance of market stability at periods of increased uncertainty, such as the opening or the closing.

Additionally, they hint that the call auction is probably, until now, the most efficient mechanism for revealing

prices after periods of no trade.

Our study is part of a new stream of the microstructure literature that investigates the effect of HFTs

on the quality of call auction markets. Bellia et al. (2016) and Bellia et al. (2017) have recently investigated

the role of HFTs in the preopening process of the Tokyo Stock Exchange and the Paris Stock Exchange,

respectively. Although price efficiency is not their main focus, these studies provide, collectively, evidence

that HFTs participate drastically in the preopening period and that they have a leading role in the price

formation process and the liquidity dynamics in the call auction market, in line with our analysis. Boussetta

et al. (2016) examine the overall role of the preopening period in the price discovery process across fragmented

markets. Using high frequency data from the Paris market and the BATS and Chi–X multilateral trading

facilities, they find, among others, that slow traders play a significant role in the price discovery process

across the different trading venues. Our empirical analysis complements the aforementioned studies in

that we provide insight on the information content of HFTs’ quotes, as well as the impact of HFTs’ order

placement activity on the informativeness of prices generated from the single call auction mechanism.

3 Analytical backround

3.1 Derivation of the equilibrium

We consider an automated transparent one–period call market where a single risky asset with random

ex–post liquidation value, u ∼ N(0, σ2
u),8 and a risk–less asset are traded. Furthermore, we normalize the

return of the risk free asset to zero and, for the sake of simplicity, we assume that market agents do not

hold an initial endowment.

The trading public consists ofK fast HFTs, M slow–human informed, L uninformed and Z liquidity/noise

traders (K,M,L,Z ∈ N). HFTs are in possession of a unique set of information collected through various

electronic networks. Therefore, in our analysis, HFTs are considered as privately informed traders. Slow

(human) informed traders hold the same piece of information about fundamentals as HFTs but they view

the asset price with less precision. That is, we assume that HFTs hold more precise information, compared

to human informed traders, as they are able to have access to a wide range of data sources as well as

increased processing power. Uninformed traders observe the publicly available market price, whereas they

8Without loss of generality we assume that E(u) = 0 (e.g., Kovalenkov and Vives, 2014).
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do not hold any private information. Noise traders arrive in the market for liquidity purposes (e.g., to close

a short position).

In the market under consideration, informed and uniformed traders act strategically, i.e. they take into

account the impact of their own orders on the clearing price. Incorporating price elasticity in our analysis is

deemed important since, herein, we assume a finite amount of traders and it is a priori possible that clearing

prices could be strategically influenced by market participants’ order placement activities (Medrano and

Vives, 2001; Biais et al., 2013).

Informed and uninformed traders are assumed to be risk averse and, therefore, they have negative

exponential expected utility functions of the form U(W ) = − exp−AW , with A and W being the risk

aversion coefficient and the terminal wealth, respectively; for simplicity, we assume that all agents have the

same risk–aversion parameter (A). Further, HFTs, slow informed investors, uninformed investors and noise

traders have, respectively, the per capita demand functions QF (F indicates Fast), QS (S indicates Slow),

QU (U indicates Uninformed) and Q, with Q ∼ N(0, σ2
Q). Because traders have access to information about

the price–volume pair (i.e., market transparency), we assume that they behave rationally in the sense that,

before posting their quotes, they update their expectations by observing the disseminated information; risk

averse traders submit limit orders whereas liquidity/noise traders submit market orders.9 After bidding, the

market clears and trading takes place.

Uninformed traders do not hold private information and, thus, they use their prior beliefs conditional

on the observed indicative price, p, to decide about their future investments. In particular, they maximize

their expected utility

E[U(W )] = E[−e−AW ] (1)

where W = QU (u − p∗) is the terminal wealth and p∗ is the clearing price. Note that since u is normally

distributed, W is also normal

W ∼ N(QU (E(u|p)− p∗), Q2
UV ar(u|p)). (2)

Using the properties of normal distribution, it is straightforward to show that maximizing the expected

utility is equivalent to maximizing the following quantity (certainty equivalent)

E(W )− A

2
V ar(W ). (3)

9We assume that the demand of liquidity trading is exogenous.
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Thus, to maximize expected utility, uninformed traders use the following first order condition:

E(u|p)− p− ∂p

∂QU
QU −AQUV ar(u|p) = 0. (4)

Notice that the price p is a function of the demand QU (strategic effect) and, therefore price impact (i.e.,

∂p

∂QU
) is introduced in the model. By solving equation (4), the following demand function is derived for

uninformed traders

QU =
E(u|p)− p

ωU +A V ar(u|p)
, (5)

where ωU =
∂p

∂QU
is the price elasticity term; in a purely competitive market this term is identically zero.

In contrast to uninformed traders, both slow (human) informed investors and HFTs receive a private

signal s with s ∼ N(0, σ2
s) that corresponds to the sum of the true ex-post liquidation value u and a white

noise term i.e.

s = u+ e (6)

where e ∼ N(0, σ2
e) is a residual term and e⊥u (σ2

e > 0).10 What differentiates HFTs from slow informed

traders is the precision with which they view the signal, i.e. we assume that the variance of the white noise

term e, σ2
e , is different between the two groups of informed traders. In other words, HFTs and human

informed traders do not hold different opinions on the value of the risky asset u (i.e., they all know the

true distribution of u), but rather receive different levels of noise.11 The rationale behind this assumption is

simple: HFTs have fast access to multiple data streams and increased processing power. Consequently, HFTs

can build a private signal that improves their precision against human traders (informed and uninformed).

The informational advantage of HFTs over slow informed (and uniformed) traders translates into the

following series of conditions:

EF (e) =ES(e) = 0, (7)

V arS(e) =σ2
S > V arF (e) = σ2

F , (8)

covS(s, u) =covF (s, u) = V ar(u) = σ2
u, (9)

where here and throughout this paper the indices S and F designate Slow and Fast, respectively. Note also

10We further assume that s and Q are uncorrelated.
11Our approach is similar to that of Hirshleifer and Luo (2001) who consider a competitive market with rational overconfident

and liquidity traders. In their framework, rational traders perceive the true distribution of e, whereas overconfident traders
believe, falsely, that the variance of e is smaller than the true variance.
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that the correlation of the signals of the HFTs and slow informed traders is positive independently from

whether the white noise terms have a non-zero covariance or not. Henceforth, we will assume that the white

noise terms are independent.

In view of the above, the demand function for informed traders assumes the following form,

QF,S =
E(u|s, p)− p

ωF,S +A V ar(u|s, p)
, (10)

where ωF,S =
∂p

∂QF,S
is the price elasticity with respect to HFTs and slow informed traders respectively.

Notice that equation (10) can be derived from the following first order condition, as in the case of uninformed

traders:

E(u|s, p)− p− ∂p

∂QF,S
QS −AQF,SV ar(u|s, p) = 0. (11)

We can now study the equilibrium of the market at hand. This is established in the following Proposition:
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Proposition 3.1. There exists a unique linear equilibrium such that the price p is given by the following

linear rule

p = αs+ βQ. (12)

The coefficient α is uniquely determined as the solution to a linear equation and is given by the following

expression

α =

C1

L
+

σ2
u

ωU

(
σ2
u + σ2

U +

(
Z

C1

)2

σ2
Q

)
+A σ2

u

(
σ2
U +

(
Z

C1

)2

σ2
Q

)

σ2
u + σ2

U +

(
Z

C1

)2

σ2
Q

ωU

(
σ2
u + σ2

U +

(
Z

C1

)2

σ2
Q

)
+A σ2

u

(
σ2
U +

(
Z

C1

)2

σ2
Q

) +
C2

L

. (13)

The coefficient β is given by the following expression

β = α× Z

C1
. (14)

Here,

C1 =
K

ωF
γF

+Aσ2
F

+
M

ωS
γS

+Aσ2
S

C2 =
K

ωF +AγFσ2
F

+
M

ωS +AγSσ2
S

and σ2
U reflects the precision with which uniformed traders choose to build their expectations; see begining of

the proof.

Proof. Following standard practices, we assume that uninformed traders view the asset price as a function

of the private signal and the demand of noise traders (Rindi, 2008; De Jong and Rindi, 2009). The normality

of the variables considered herein asserts that this function must be linear, so that,12

p̂ = αs+ βQ, (15)

12Linearity in s and Q is often considered an assumption. Nonetheless, within a rational expectation framework where all
random variables are normal this is actually a corollary.
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for some real numbers α and β.13 A subtle point in this respect concerns the variance that uniformed

traders will utilize when formulating their expectations. Uniformed traders are aware (in our framework)

that HFTs and slow informed traders view the same private signal, albeit with different quality. They are,

however, unable to extract σ2
S and σ2

F . Moreover, linearity dictates that they can only consider a signal s

with precision being a linear combination of σ2
S and σ2

F , i.e. the precision of slow informed traders and HFTs,

correspondingly. Herein, we assume that uniformed traders form their expectations based on a weighted

average precision

σ2
U = V arU (e) = λσ2

F + (1− λ)σ2
S , (16)

with λ ∈ [0, 1]. In other words, uniformed traders conjecture that there exists a signal with (weighted)

average levels of noise.

Based on the above, the conditional expectation and variance of u can be calculated. In view of the

theorem of projection for normal variables, the following conditional moments are obtained:

E(u|p = αs+ βQ) =
ασ2

u

α2σ2
u + α2σ2

U + β2σ2
Q

p (17)

and

V ar(u|p = αs+ βQ) = σ2
u

(
α2σ2

U + β2σ2
Q

α2σ2
u + α2σ2

U + β2σ2
Q

)
. (18)

The conditional expectations (and variances) for the informed traders are more involved but the joint

normality of u and e substantially simplifies the algebra. The final relations read:

EF,S(u|s, p) = s
σ2
u

σ2
u + σ2

F,S

= γF,Ss = EF,S(u|s) (19)

and

V arF,S(u|s, p) = σ2
F,S

σ2
u

σ2
u + σ2

F,S

= γF,Sσ
2
F,S = V arF,S(u|s) (20)

where γF,S = σ2
u/(σ

2
u + σ2

F,S) and, as before, F and S correspond to fast HFT and slow informed investors.

The equalities EF,S(u|s, p) = EF,S(u|s) and V arF,S(u|s, p) = V arF,S(u|s) that stem from equations (19)

and (20) do not contradict (10), where it was a priori assumed that HFTs and slow informed investors form

their expectations based on both variables (s and p). These equalities are a consequence of the linear price

rule and the fact that informed traders observe the same signal, albeit with different precision.

13More generally, one should include an additive constant in (15) as done, for instance, in Garćıa and Urošević (2013).
However, due to the fact that E(u) = 0, this constant turns out to be zero and for this reason it has been omitted.

14



The market condition to calculate the clearing price is that the excess demand is zero:

KQF +MQS + LQU + ZQ = 0 (21)

Using the conditional expectations derived earlier, equation (21) becomes, after some simplification,

K
γF s− p

ωF + γFA σ2
F

+M
γSs− p

ωS + γSA σ2
S

+ L
(α− α2)σ2

u − α2σ2
U − β2σ2

Q

ωU (α2σ2
u + α2σ2

U + β2σ2
Q) +A σ2

u(α2σ2
U + β2σ2

Q)
p+ ZQ = 0.

(22)

Next, we rearrange equation (22) to acquire

 K
ωF
γF

+Aσ2
F

+
M

ωS
γS

+A σ2
S

 s+ ZQ =− L
(α− α2)σ2

u − α2σ2
U − β2σ2

Q

ωU (α2σ2
u + α2σ2

U + β2σ2
Q) +A σ2

u(α2σ2
U + β2σ2

Q)
p

+

(
K

ωF + γFAσ2
F

+
M

ωS + γSA σ2
S

)
p, (23)

which is equivalent to

 K
ωF
γF

+Aσ2
F

+
M

ωS
γS

+A σ2
S

 s+ ZQ = Rp = R(αs+ βQ) = Rαs+RβQ, (24)

for

R = −L
(α− α2)σ2

u − α2σ2
U − β2σ2

Q

ωU (α2σ2
u + α2σ2

U + β2σ2
Q) +A σ2

u(α2σ2
U + β2σ2

Q)
+

(
K

ωF + γFAσ2
F

+
M

ωS + γSA σ2
S

)
. (25)

At the final step of our analysis, we impose rational expectations by matching the coefficients on the left

and the right hand sides of equation (24).14 By doing so, we immediately obtain the following relations,

R = Z/β, Rα =
K

ωF
γF

+Aσ2
F

+
M

ωS
γS

+A σ2
S

,
α

β
=

K

Z

(
ωF
γF

+Aσ2
F

) +
M

Z

(
ωS
γS

+A σ2
S

) . (26)

Since in view of conditions (26) α is a linear function of β, for the determination of these coefficients

it suffices to solve either of the equalities emerging from the coefficient matching. We opt to solve the

14Realizations coincide with expectations in equilibrium.
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algebraic equation for the coefficient of s,

 K
ωF
γF

+Aσ2
F

+
M

ωS
γS

+A σ2
S

 = Rα, (27)

which, using equation (25), can be written as

 K
ωF
γF

+Aσ2
F

+
M

ωS
γS

+A σ2
S

 =− L
(

1

α
− 1)σ2

u − σ2
U −

(
β

α

)2

σ2
Q

ωU (σ2
u + σ2

U +

(
β

α

)2

σ2
Q) +A σ2

u(σ2
U +

(
β

α

)2

σ2
Q)

α

+

(
K

ωF + γFAσ2
F

+
M

ωS + γSA σ2
S

)
α. (28)

In equation (28), we have divided each term of the first part of the right–hand side by α2 (α 6= 0). Next,

we introduce the third relation of (26) into (28) and upon setting

C1 =
K

ωF
γF

+Aσ2
F

+
M

ωS
γS

+Aσ2
S

(29)

C2 =
K

ωF +AγFσ2
F

+
M

ωS +AγSσ2
S

(30)

we obtain,

C1

L
=

(α− 1)σ2
u + ασ2

U + α

(
Z

C1

)2

σ2
Q

ωU

(
σ2
u + σ2

U +

(
Z

C1

)2

σ2
Q

)
+A σ2

u

(
σ2
U +

(
Z

C1

)2

σ2
Q

) +
C2

L
α.

This is a first order equation with respect to α with the following (unique) solution:

α =

C1

L
+

σ2
u

ωU

(
σ2
u + σ2

U +

(
Z

C1

)2

σ2
Q

)
+A σ2

u

(
σ2
U +

(
Z

C1

)2

σ2
Q

)

σ2
u + σ2

U +

(
Z

C1

)2

σ2
Q

ωU

(
σ2
u + σ2

U +

(
Z

C1

)2

σ2
Q

)
+A σ2

u

(
σ2
U +

(
Z

C1

)2

σ2
Q

) +
C2

L
.

(31)
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Using the first two relations of (26), β is given by the following expression

β = α× Z

C1
, (32)

and the price p is uniquely determined.

3.2 Characterization of price efficiency

In this Section we provide the definition of price efficiency as well as its characterization with respect to

the model parameters described in Section 3.1.15

Proposition 3.2. Price efficiency is given by

V ar(u|p = αs+ βQ)
−1

=
1

σ2
u

+
1

σ2
U + (β/α)2σ2

Q

, (33)

with
β

α
=

Z
K

ωF
γF

+Aσ2
F

+
M

ωS
γS

+Aσ2
S

.
(34)

Proof. Price efficiency can be derived by re–writing equation (18) to as follows,

V ar(u|p = αs+ βQ)
−1

=[
σ2
u

(
α2σ2

U + β2σ2
Q

α2σ2
u + α2σ2

U + β2σ2
Q

)]−1
=

1

σ2
u

+
1

σ2
U + (β/α)2σ2

Q

,

(35)

with

β

α
=

Z
K

ωF
γF

+Aσ2
F

+
M

ωS
γS

+Aσ2
S

. (36)

Equation (35) represents the informativeness of p about the liquidation value, u, of the asset.

Although the relations involving α and β are quite cumbersome, equation (35) for price efficiency, which

is the focus of our study, is quite simple and can be analyzed as follows:

15A list of the model parameters is presented in Appendix A at the end of the manuscript.
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1) Price efficiency with respect to K and M :

As the number of HFTs, K, increases in the market, price efficiency improves
(
∂V ar(u|p)−1/∂K > 0

)
.16

Accordingly, as the number of human informed traders, M , increases, clearing prices reflect more information(
∂V ar(u|p)−1/∂M > 0

)
. To keep the analysis tractable and for the sake of space preservation, we present

analytical formulas for the partial derivatives of V ar(u|p)−1 with respect to the model parameters in the

Internet Appendix (attached at the end of the manuscript).

We recall that HFTs view the same private signal as privately informed NON HFTs but with greater

precision. However, in view of our assumption that both HFTs and NON HFTs can act strategically, we

cannot conclude that price efficiency improves faster with K increased as opposed to M increased. Rather,

there is an interesting interplay that is quantified by the following proposition.

Proposition 3.3. For price efficiency given by (35), the following hold true,

i) If the equilibrium is competitive (ωF = ωS = 0) then

∂V ar(u|p)−1/∂K > ∂V ar(u|p)−1/∂M, (37)

i.e. the rate at which information is incorporated into prices with respect to K will always be greater

than the corresponding rate for slow informed traders.

ii) If the equilibrium is strategic then, if

ωF >
A(σ2

S − σ2
F )σ2

u

σ2
F + σ2

u

+ ωS
σ2
S + σ2

u

σ2
F + σ2

u

, (38)

we have that

∂V ar(u|p)−1/∂K < ∂V ar(u|p)−1/∂M (39)

i.e. the rate at which information is incorporated into prices with respect to K is less than the rate at

which information is induced into prices with respect to M .

16Without loss of generality, to calculate the partial derivative of price efficiency with respect to K (or M,Z), we extend the
domain of K (M,Z) from N to R.
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Proof. We treat (i) and (ii) separately. As regards (i), using the analytical formulas from the Internet

Appendix, it is simple to show that

∂V ar(u|p)−1

∂M
∂V ar(u|p)−1

∂K

=

Aσ2
F +

ωF
(
σ2
F + σ2

u

)
σ2
u

Aσ2
S +

ωS
(
σ2
S + σ2

u

)
σ2
u

< 1, (40)

since σ2
F < σ2

S and ωF = ωS = 0.

Case (ii) is a little more involved. Again, using the analytical formulas for the partial derivatives, we

start from the following inequality

∂V ar(u|p)−1

∂M
∂V ar(u|p)−1

∂K

=

Aσ2
F +

ωF
(
σ2
F + σ2

u

)
σ2
u

Aσ2
S +

ωS
(
σ2
S + σ2

u

)
σ2
u

> 1, (41)

which can be written as

Aσ2
F +

ωF
(
σ2
F + σ2

u

)
σ2
u

> Aσ2
S +

ωS
(
σ2
S + σ2

u

)
σ2
u

. (42)

After some simple algebraic manipulations we obtain

ωF >
A(σ2

S − σ2
F )σ2

u

σ2
F + σ2

u

+ ωS
σ2
S + σ2

u

σ2
F + σ2

u

, (43)

with

σ2
S + σ2

u

σ2
F + σ2

u

> 1 (44)

since

σ2
S > σ2

F . (45)

Therefore, in a strategic equilibrium, under condition (43) the rate at which information is induced into

prices as the number of HFTs (K) increases is lower compared to the corresponding rate for NON HFTs.

2) Price efficiency with respect to ωF,S :

As the price impact of informed traders increases, price efficiency diminishes
(
∂V ar(u|p)−1/∂ωF,S < 0

)
. In

other words, when traders consider the effect of their demands on the price formation process, they are
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willing to trade less aggressively and, therefore, information is incorporated into prices with a smaller rate.

By contrast, when traders increase competition (ωF,S decreases), information is incorporated into prices

faster (Rindi, 2008); see, Figure 1. In the extreme case where ω is equal to zero for all types of traders, we

obtain the pure competitive equilibrium.

To demonstrate the result established in Proposition 3.3, Figure 2 plots price efficiency with respect to

ωF for a NON HFT market (K = 0,M = 30) and for the following HFT markets (M = 0,K = 30, 50, 100).

From equation (43) we calculate that the breakpoint for the markets (K = 0,M = 30) and (M = 0,K = 30)

is ωF = 1.5364 for the model parameters fixed in the example (see Figure 2). As ωF increases in the HFT

market (M = 0) price efficiency drops, however it is greater compared to the NON HFT market (K = 0)

until the breakpoint is reached. After the breakpoint is reached, HFTs become significantly more strategic

compared to NON HFTs and, thus, the information contained in their quotes is induced into prices at

a smaller rate compared to the case of NON HFTs. In such a scenario, the amount of HFTs should be

significantly larger compared to that of NON HFTs in order for the improved precision of HFTs’ signal to

have a greater effect on price efficiency. This can be observed in Figure 2 where by increasing the number

of HFTs, K, in the market price efficiency drops at a smaller rate with ωF increased.

It is worth noting that when the equilibrium is purely competitive (wF = 0 and wS = 0) and traders

are risk neutral (A = 0) then price efficiency is constant and equal to 1/σ2
u + 1/σ2

U , since β/α = 0. By

contrast, when A = 0 and traders are strategic (wF 6= 0 and/or wS 6= 0) price efficiency differs significantly

from 1/σ2
u + 1/σ2

U . This feature can be observed in Figure 3 which plots price efficiency against K and M

for different levels of ωF and for A = 0. On the other hand, while A = 0 and wF 6= 0 and/or wS 6= 0,

if we let K → +∞ and M → +∞ (i.e., as in a market with a continuum of traders) then price efficiency

converges to 1/σ2
u + 1/σ2

U ; that is, the strategic case collapses to the competitive case. Thus, when market

participants are few (finite) and risk neutral (or close to risk neutral), the competitive equilibrium can

deviate significantly from the true strategic equilibrium, whereas only when the market is large enough the

true strategic equilibrium is well approximated by the competitive one (Kovalenkov and Vives, 2014).

[Figures 1, 2 and 3 around here]

3) Price efficiency with respect to σ2
F,S :

Prices become more efficient as the accuracy of HFTs’ signal increases; that is, as σ2
F decreases price in-

formativeness improves
(
∂V ar(u|p)−1/∂σ2

F < 0
)
. Symmetrically, the same result holds for slow informed

traders
(
∂V ar(u|p)−1/∂σ2

S < 0
)
. Figure 4 illustrates the effect of σ2

F decreased on price efficiency. Notice,

also, that in this particular example the market is competitive (ωF = ωS = 0) and thus price efficiency
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improves faster as the number of HFTs increases, compared to NON HFTs.

[Figure 4 around here]

4) Price efficiency with respect to σ2
U :

As σ2
U increases (decreases), price efficiency diminishes (increases)

(
∂V ar(u|p)−1/∂σ2

U < 0
)
. Thus, price

efficiency depends on the weight (λ) that uninformed traders place on the signals of privately informed

HFTs and NON HFTs, when forming their expectations about the price; see, Figure 5.

[Figure 5 around here]

5) Price efficiency with respect to A:

The risk aversion coefficient A is inversely correlated with market efficiency
(
∂V ar(u|p)−1/∂A < 0

)
. When

traders are more/less risk averse (that is, the risk aversion coefficient A increases/decreases) market efficiency

is lower/higher. This result is natural in the sense that bids become less/more aggressive and, therefore,

information is impounded into prices with lower/higher speed. This is illustrated in Figure 6 which shows

price efficiency, V ar(u|p)−1, as a function of the number of informed traders in the market (M and K)

and for different levels of risk aversion. Notice, also, that the effect of privately informed HFTs and NON

HFTs on price efficiency is asymmetric due to the difference in the precision of the signals and the fact that

ωF = ωS = 0. In this respect, information is incorporated into prices faster when HFTs are present in the

market; consider, for example, the marginal case of a HFT market (M = 0 and K 6= 0) compared to a

market with only human informed traders (M 6= 0 and K = 0).

[Figure 6 around here]

6) Price efficiency with respect to Z:

Noise trading (i.e., Z) is inversely correlated with price efficiency
(
∂V ar(u|p)−1/∂Z < 0

)
(Grossman and

Stiglitz, 1976, 1980). Figure 7 plots V ar(u|p)−1 as a function of the number of informed traders in the market

(M and K) and for different levels of noise. Price efficiency diminishes significantly when noise trading

increases. Observe, again, that the effect of noise trading on price efficiency is asymmetric considering the

presence of HFTs (K) and NON HFTs (M) in the market, as the simulation corresponds to a competitive

equilibrium (ωF = ωS = 0) and σ2
F < σ2

S . Therefore, information is induced into prices faster through

HFTs’ quotes.

Note that, either in the competitive or in the strategic framework, the level of price efficiency is always

greater when both types of traders are present in the market (K 6= 0,M 6= 0), compared to price efficiency
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in a pure HFT market (M = 0,K 6= 0) or a pure NON HFT market (K = 0,M 6= 0), under the same

market conditions. Formally, the following inequalities hold for all values of K and M :

V ar(u|p = αs+ βQ)
−1

=

1

σ2
u

+
1

σ2
U +


Z

K
ωF
γF

+Aσ2
F

+
M

ωS
γS

+Aσ2
S


2

σ2
Q

>
1

σ2
u

+
1

σ2
U +


Z
M

ωS
γS

+Aσ2
S


2

σ2
Q

(46)

and

V ar(u|p = αs+ βQ)
−1

=

1

σ2
u

+
1

σ2
U +


Z

K
ωF
γF

+Aσ2
F

+
M

ωS
γS

+Aσ2
S


2

σ2
Q

>
1

σ2
u

+
1

σ2
U +


Z
K

ωF
γF

+Aσ2
F


2

σ2
Q

,

(47)

given that all the other parameters of the model are fixed. This feature is of particular importance when

the level of noise (Z) is considerably elevated and market participants are few. Consider, for example,

Figure 8 which plots V ar(u|p)−1 as a function of the number of informed traders in the market (M and K)

and for different levels of elevated noise. In the case where Z = 100, price efficiency reaches its pick when

M = K = 30, whereas for (M = 0,K = 30) or (M = 30,K = 0) price efficiency is significantly less.

[Figures 7 and 8 around here]

3.3 Discussion

In the present Section we have presented a theoretical background that describes the bidding activity

in a transparent order–driven single call market. The trading public consists of fast informed HFTs, slow

(human) informed, uninformed and liquidity traders. HFTs are able to view the same private signal as

human informed traders but with greater precision due to their ability to collect information from various

data sources. The model predicts that HFTs accelerate price discovery and price efficiency due to the

increased information content of their quotes, to the extent, however, that they do not behave strategically.

In the subsequent analysis, we are interested to examine empirically the predictions of our model on

price efficiency, using an intraday data set from the order driven Paris stock market opening call. The Paris

preopening period is transparent and, therefore, market participants are able to observe the evolution of the
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indicative price–volume pair and, in turn, to submit or adjust their orders. Thus, the order accumulation

process can be viewed as a sequence of theoretical market clearings where rational agents drive the price to

its equilibrium value as time evolves. Consequently, the preopening period constitutes a natural laboratory

to examine our model findings.

Our empirical study is closely related to that of Biais et al. (1999), who find that preopening indicative

prices in the Paris Bourse become more informative as the clearing time approaches; the authors refer to this

feature as a ‘learning pattern’. In this respect, they argue that investors learn from each other by observing

the preopening order flow, thus submitting more informative orders as the opening time approaches. On the

other hand, because bidding is only theoretical in the preopening, strategic trading may affect negatively

the price discovery process by inducing noise into prices. Herein, we are interested to examine the presence

of learning patterns and, more important, to investigate the magnitude of the effect of HF quotes on the

informativeness of preopening and opening prices in the Paris market. According to our model findings, call

auction prices should predict better the true value of the asset when competitive HFTs are active in the

market, whereas they should reflect noise when HFTs become strategic.

4 An empirical application

4.1 The Paris Euronext market

Trading at the Euronext Paris platform is conducted in two main ways: a) the order–driven market

model and b) the LP quote driven market model. The former is a continuous trading model where liquidity

is provided through individual brokers’ orders with the enhancement of Supplementary Liquidity Providers

(SLPs), whereas the latter concerns securities which are traded continuously via the quotation of designated

Liquidity Providers (LPs).

The order–driven system includes either continuous or periodic auction trading. The first mechanism

concerns the more liquid securities, like those comprising the CAC 40 Index, whereas the second is for the

less liquid securities. The continuous double auction mechanism, examined herein, is operated under the

following daily time (CET) schedule:17

1. 07:15–09:00 Preopening phase – Order accumulation period

2. 09:00 Opening auction

3. 09:00–17:30 Main trading session: Continuous session

17The trading day schedule can be found at: https://www.euronext.com/en/trading-calendars-hours

23



4. 17:30–17:35 Preclosing phase – Order accumulation period

5. 17:35 Closing auction

6. 17:35–17:40 Trading at the last phase (at the close)

7. 17:40–07:15 After hours trading

The opening call auction procedure lasts 1 hour and 45 minutes. During this time period investors are

allowed to submit, modify, or cancel orders, while observing the disclosed information on the evolution of

the indicative clearing price–volume pair and the prevailing bid–ask quotes. Since trading is absent, all

orders are stored into the central limit order book with price–time execution priority. Three main types of

orders are allowed during the preopening period: a) market on opening orders, b) pure market orders and

c) limit orders.18 Also, market on opening orders and pure market orders have priority against limit orders

at the time of the auction. Figure 9 illustrates the formulation of crossing supply and demand lines, due to

the absence of trade, for a hypothetical set of limit prices and quantities. Notice that because stock prices

are discrete, it is possible that more than one equilibrium values are present.

[Figure 9 around here]

After the end of the accumulation period, the electronic system considers the supply–demand schedule formed

by the queuing orders, seeking for the price that maximizes the trading volume; that is, the equilibrium

value. If the maximum volume principle suggests more than one equilibrium prices, then the opening price is

set according to the minimum volume surplus principle. Lastly, if more than one prices satisfy the minimum

surplus principle, then the system fixes as the opening price the one that is closer to the reference price;

the latter is usually the price of the last trade before the preopening period. After the opening price is set,

buy and sell orders are matched and executed in a single trade and at a single opening price. Unexecuted

market or limit orders are sent forth to the main session with the original price and time priority; market

orders are stored as limit orders at the opening price.

It is important to mention that the opening time in the Paris market was fixed at 09:00 until the

15/08/2015, whereas after 15/08/2015 the uncrossing takes place randomly between 09:00:00 and 09:00:30.

4.2 Data sample

The data sample used in the present study is retrieved from the AMF–BEDOFIH Paris Euronext high

frequency database and includes 36 stocks from the CAC 40 Index composition on 3 January 2013 and for

18Because they do not include price preference, market and on open sell (buy) orders are aggregated at the best ask (bid).
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the entire year 2013 (254 trading days).19 For four stocks transactions take place on the Paris platform,

whereas their negotiation is conducted on other platforms (i.e., the securities are dual listed) (see Table 2).

We have excluded these stocks from our sample as the database does not contain information on the related

quoting activity.

The sample encompasses two main files: i) trades and ii) orders. The first contains information about

the trading history in the Euronext Paris market. More specifically, the data set includes information about

the time (accurate to the microsecond), the price and the quantity of negotiations. The second includes

information about the order placement history; time of submission, price, size, side, duration, type, validity

and time of release from the system (either because of execution or because of cancellation).

It is worth mentioning that in our sample period (2013) the opening time is fixed at 09:00 (see, also,

Section 4.1). This feature is rather important for investors as it allows them to adjust or cancel their orders

literally just before the opening, without fearing of having them executed at an undesirable clearing price;

see, for instance, Medrano and Vives (2001) for a detailed analysis of the effect of a random opening time

on investors’ order placement strategies.20

An important aspect of the data set, crucial to our work, is a unique HFT flag that accompanies order

and trade messages. In particular, and in line with the AMF documentation (see, Megarbane et al. (2017)),

each message is categorized according to the following list:

a) HFT: High Frequency trader

b) NON HFT: Non–High Frequency trader

c) MIXED: Mixed trader (investment bank account applying HFT)

The definition of the HFT flag, as provided by AMF, is based on the following two conditions:

1) A market participant (with a specific ID) is classified as a HFT if: i) the average lifetime of her canceled

orders is less than the average lifetime of all canceled orders in the book, and ii) she has canceled at

least 100,000 orders during the year.

2) A market participant (with a specific ID) is classified as a HFT if: i) he has canceled at least 500,000

orders with a lifetime of less than 0.1 second and ii) the top percentile of the lifetime of his canceled

orders is less than 500 microseconds.

19The Paris market data included in the BEDOFIH database are provided by the AMF. Further Information on the BEDOFIH
database can be found at: https://www.eurofidai.org/en. Note, also, that the Euronext Paris AMF–BEDOFIH database
has been used recently by Boussetta et al. (2016) and Bellia et al. (2017) in their empirical analyses.

20For additional details on the Euronext Paris stock market opening and main sessions, see, also, Biais et al. (1999) and
Biais et al. (1995), respectively.
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Note that, according to the AMF classification, the market participant is classified as a HFT if she meets

one of these conditions. If, additionally, the participant operates on behalf of a large investment bank, she

is classified as a MIXED trader. It is important to mention that once a trader is classified as HFT, NON

HFT or MIXED, this flag is immutable.

4.3 Preliminary analysis

4.3.1 Order flow during the preopening

This Section provides a preliminary analysis of the preopening order flow and opening trading activity

in the Paris market to motivate further the empirical analysis of the present study.

[Table 1 around here]

Table 1 reports summary statistics about submissions, modifications and cancellations during the preopening

period in 15 minute frequency and for each trader type; HFT, MIXED and NON HFT. The first thing to

notice is that the activity of HFTs and MIXED traders is rapidly increased after 08:30. For HFTs, the

across stocks and days average number of submissions in the intervals 08:30–08:45 and 08:45–09:00 is 220.8

and 112.6, respectively, whereas earlier it is practically zero. For MIXED traders, order submissions are

significantly elevated between 08:45 and 09:00; the corresponding (stock–day) average number of submissions

is 129.9. On the other hand, human traders (NON HFTs) enter the market earlier in the morning as

significant bidding starts at 07:15. Similar to HFTs and MIXED traders, however, NON HFTs increase

their bidding activity between 08:30 and 08:45.

Regarding modifications and cancellations, HFTs and MIXED traders sharply increase their activity

before the opening, in the interval between 08:45 and 09:00; the average number of modifications and

cancellations is, respectively, 36.6 and 30.6 for HFTs and 58.9 and 33.3 for MIXED traders. Human traders

also increase their modification activity minutes before the opening (17.5 modifications on average), whereas

their cancellations are less compared to those submitted by HFTs and MIXED traders (6 on average).21

Interestingly, a significant increase in the average order size is observed for all types of traders just before

the opening time. For example, HFTs increase the order size from 192.1 to 667.9 shares from 08:30 to 09:00.

Accordingly, MIXED and human traders increase their bidding intensity from 1,824.3 and 779.8 to 5,938.6

and 1,373.8 shares, respectively, from 08:30 to 09:00.

21Our summary results on the HFTs’ order flow are consistent with those reported by Bellia et al. (2017) for the Paris
preopening period and for the CAC 40 sample in year 2013. The authors report that HFTs enter the call market after 08:30,
whereas they increase their order placement activity just before the clearing time.
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A few comments are in order regarding the summary statistics on the order flow. First, all types of

traders act, to some extent, strategically by submitting orders earlier in the preopening and then modifying

and/or canceling their bids prior to opening. This feature implies a possible deterioration in the price

discovery process, consistent with the prediction of our model (i.e., ω increased, price efficiency decreased).

Second, the increase in the average number of order submissions as well as the average order size a few

minutes before the clearing time, indicates that traders submit true orders with the intention of having

them executed. Thus, such orders should convey significant information which, in turn, is incorporated into

prices. For example, in Easley and O’Hara (1987) investors increase the size of their order to profit from

their private information. Accordingly, our model predicts that price efficiency should increase drastically

before the opening (competitive bidding).

It is important to note that the percentage of quotes placed by designated Supplementary Liquidity

Providers during the preopening is less than 2%, according to our computations, which is practically negli-

gible. Hence, we postulate that the rest of traders (HFTs and/or NON HFTs) entering the market before

the clearing time are willing to trade for individual and not for market making purposes.

Given that our overall purpose is to investigate the effect of HFTs on the informational content of auction

prices, for the remaining of our empirical analysis we shall often consider HFT and MIXED flagged quotes

as a single group, the HFT group. Further, our focus will be placed on the last 30 minutes of the preopening

(08:30–09:00) when HFTs enter the market rapidly.22

4.3.2 The last 30 minutes

This Section focuses on the last 30 minutes of the preopening. In particular, we provide some visual

evidence on the order flow and market depth characteristics attributed to the three types of traders in our

data set. Figure 10 illustrates the evolution of the across days and stocks average number of submissions,

modifications and cancellations for each type of trader (HFT, MIXED and NON HFT) in 1 minute time

intervals. HFTs enter the market rapidly at 08:30 with a stock–day average number of submissions equal

almost to 140. Submissions for human traders are also elevated at 08:30, whereas MIXED traders exhibit a

very low rate of submissions at that point in time.

[Figure 10 around here]

After 08:55, that is 5 minutes until the opening, all types of traders increase their order submission activity.

22We have also conducted our empirical analysis over the entire preopening period and results indicate that before 08:30
there is considerable noise in the market.
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The same holds for order modifications and cancellations, especially for HFTs and MIXED traders. The im-

plementation of frequent submit–cancel strategies by HFTs has been well–documented in the microstructure

literature, although exclusively in the continuous double auction mechanism (e.g., Chlistalla, 2012; O’Hara,

2015). Accordingly, we postulate for the call auction mechanism that HFTs increase their cancellations and

modifications just before the clearing time, possibly taking advantage of their speed, while re–submitting

larger and more aggressive orders with the intention of having them executed.

[Figure 11 around here]

Figure 11 depicts the evolution of the market depth that is attributed to HFTs (here, HFT and MIXED

shares are altogether) and NON HFTs during the last 30 minutes of the order accumulation process. An

interesting insight is revealed by the top graph, regarding the percentage of HFT shares standing on the

book. Both on the buy and the sell side, NON HFT shares are the vast majority during the most of

the preopening time period, whereas the inverse is observed after 08:57. Further, and according to the

middle graph, this change on the percentage of standing shares is attributed to the fact that HFTs increase

sharply their participation in shares on the order book. Indeed, according to Table 1, the average number

of submissions as well as the average order size are significantly increased at that time of the preopening.

Hence, we infer that HFTs become more aggressive before the opening, submitting orders with the intention

of having them filled. The latter argument is further corroborated by the bottom graph in Figure 11 which

illustrates the percentage of shares on the executable side of the book, attributed to HFTs.23 Prior to

opening, the percentage of aggressive HFT shares on the buy (sell) side is almost 42% (70%). Hence, a

significant amount of HFT orders is expected to be executed at the opening trade.

4.3.3 Opening trade

This Section discusses summary statistics at the opening. Specifically, Table 2 reports means for the

opening volume, number of trades, value of transactions, percentage of value of transactions relative to

total daily value of transactions, as well as HFT, NON HFT and MIXED trading activity, for our CAC 40

stock sample. The opening trade accounts for, approximately, 1.4% of total daily traded volume.24 This

percentage is rather low compared to the 10% reported by Biais et al. (1999) for the opening auction of the

23Given that the clearing price is p, executable buy (sell) orders are those with a limit price higher or equal (lower or equal)
than p. Also, market and at–the–open orders which have no price preference are considered as infinitely aggressive and thus
they have higher execution priority.

24Similar to our findings, Boussetta et al. (2016) report that the average percentage of opening volume with respect to the
total daily traded volume ranges from 1.3% for large stocks (CAC 40 or CAC Next 20) to 1.9% for smaller stocks in the Paris
market and for the years 2012 and 2013.
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CAC 40 stocks in 1993. It is consistent, however, with our theoretical analysis where we have chosen to

model the clearing market with a finite number of agents.

Concerning the HFT activity, the percentage of HFT and MIXED flagged trades at the opening is

significantly increased; almost 51.5%, on average, of total HFT buying activity at the opening involves HFT

or MIXED flags, while on the sell side the corresponding percentage is approximately equal to 45%. These

findings are in line with the preopening market depth statistics presented in Section 4.3.2. That is, HFTs

increase their aggressiveness prior to opening, submitting orders which are expected to be executed.

[Table 2 around here]

4.4 The effect of HFTs’ quotes on call auction prices

Having demonstrated that HFTs participate actively in the preopening period, especially during the last

30 minutes before the clearing time, in this Section we address two emerging questions: How large is HFTs’

contribution to total price discovery, and, more important, do HFTs’ quotes improve price informativeness?

4.4.1 Price discovery during the preopening

To study the contribution of HFTs to the price formation process during the preopening period, we

employ the Weighted Price Contribution (WPC) statistic introduced by Barclay and Warner (1993), which

is defined as follows:

WPCk =

Nstocks∑
i=1

(
|∆P i|∑Nstocks

i=1 |∆P i|

)
×
(

∆P k,i
∆P i

)
, (48)

where ∆P i is the total logarithmic price change for the period of interest (that is, the last 30 minutes of the

preopening between 08:30 and 09:00) for stock i (i = 1, ..., Nstocks) and ∆P k,i is the logarithmic price change

for interval k within the period of interest. The first parenthesis in equation (48) is the weighting factor for

each stock to control for potential heteroscedasticity in preopening returns, whereas the second parenthesis

is the contribution of interval k to total price adjustment (Barclay and Hendershott, 2003). Note that the

WPC statistic, as defined above, is the weighted average price contribution across stocks. Subsequently, this

quantity is averaged across days to obtain the overall WPC estimate. Similar results can be acquired by

averaging first across days, within equation (48), and then across stocks. In this case, however, it is likely

that the common market component in stock returns will add bias to the average estimate of the WPC

statistic. Therefore, following Barclay and Hendershott (2003), we select to calculate the WPC statistic day

by day and then to average across days.25

25Bellia et al. (2017) apply a variation of the WPC statistic, the WPDC (Weighted Price Discovery Contribution), for the
French stock market. In particular, the authors calculate the WPDC order by order to separate the contribution of HFTs
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To separate the contribution of different types of traders on the price discovery process, we consider the

following three cases:

• HFT market: order book calculated exclusively on the basis of HFT and MIXED orders that pertain

directly to HFT activity.

• NON HFT market: order book calculated on the basis of slow traders’ quotes, flagged as NON HFTs.

• Actual market: the full order book.

For each of the three cases, we calculate indicative prices per 1 minute, from 08:30 to 09:00 (opening) and,

subsequently, the logarithmic intraday returns ∆Pk,i are used in equation (48).26 We calculate, however,

the 08:30 to 09:00 return, ∆Pi, using prices exclusively from the actual market, in all three cases. By doing

so, we opt to proxy the contribution of each type of trader (and for each preopening interval) to total price

discovery between 08:30 and 09:00.27

[Figure 12 around here]

The upper graph in Figure 12 illustrates the evolution of the cumulative Weighted Price Contribution

statistic within the preopening period for the aforementioned three cases. Evidently, HFTs lead the price

formation process almost over the entire period. At the end of the preopening, HFT prices can explain

approximately 73% of total price discovery, whereas NON HFT price adjustments can explain only 48% of

total price discovery.

Interestingly, prices in the HFT market seem to reverse at about 08:56. From the bottom graph in

Figure 12 we observe that prior to opening HFTs generate negative returns. This feature can be explained

by the fact that HFTs tend to place sell quotes aggressively; almost 70% of aggressive sell quotes just before

the clearing time are attributed to HFTs (see Figure 11). Nonetheless, earlier at 08:50 the HFT order

book generates excessively positive returns, implying that HFTs tend to place buy quotes more aggressively.

Notice, also, the influence of HFTs on the actual returns (the pick in the bottom graph for the FULL

and NON HFTs to total price discovery. Similarly, Ciccotello and Hatheway (2000) employ the WPC statistic per quote to
separate the contribution of each NASDAQ dealer to total price discovery. Our approach, however, differs in that we construct
tentative prices on the basis of the different sets of orders that pertain to HFT and NON HFT activity and, subsequently, we
use them to estimate the standard WPC statistic.

26When the market is empty (i.e., when supply does not cross demand) we fix as the indicative price the mid–point value
(Hasbrouck, 1991). This feature is rather often for HFTs since before 08:30 their participation in the market is practically
negligible. When there are no orders on the buy and/or the sell side we omit the calculation.

27In a similar way, Madhavan and Panchapagesan (2000) and Anagnostidis et al. (2015) separate market from limit orders
in the NYSE and the Athens Exchange market opening, respectively, to compare the information content of the limit order
book against the actual system price which includes price–inelastic market and at–the–open orders.
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BOOK case), which tend to be positive at 08:50 on average. The aforementioned evidence indicates a

strategic change in the quoting behavior of HFTs which, according to our model, should deteriorate the

information content of indicative prices.

4.4.2 Price efficiency

Thus far, our empirical results suggest that HFTs play a leading role in the price discovery process during

the preopening, especially toward the clearing time. Further, we find evidence that HFTs act strategically

by submitting orders earlier in the preopening which they later adjust or cancel, affecting, therefore, the

price formation process. In this Section we investigate the effect of HFTs on price informativeness which is

the central question of our study. In particular, we test the main prediction of our model that accurately

informed HFTs improve price efficiency when they bid competitively, whereas they induce noise into prices

when they behave strategically.

For the purposes of our analysis we employ the unbiasedness regression technique of Biais et al. (1999).

To do so, we use the current day closing price as a representation of the fair value of the stock, u. This proxy

is based on the assumption that at the end of the trading day prices reflect all market information.28 Now,

consider the information set I0 at the start of the preopening period (i.e., the start of the trading day). Then,

the previous day closing price represents the expected value of the stock at time zero (t = 0) conditional on

I0; denote this expectation by E(u|I0). If traders consider the disclosed information on the indicative price

and the order book dynamics, then as time progresses price Pt should become more informative; that is,

Pt = E(u|It) with It being the information set at time t > 0. On the other hand, if the price Pt incorporates

noise, then it should reflect the information set I0 plus a noise term ηt. Thus, Pt = E(u|I0) + ηt with ηt⊥u.

To conduct the econometric test, we initially compute theoretical prices over 1 min frequency in the

preopening period for the three cases: HFT market, NON HFT market and the full order book (the actual

market). Subsequently, we utilize the following overnight logarithmic returns: 1) previous day close to

current day preopening time t, Rct and 2) previous day close to current day close, Rcc. The first type

proxies the difference between the preopening price Pt and the equilibrium value at the start of the day

E(u|I0), [Pt − E(u|I0)], whereas the second type proxies the change of the equilibrium price of the stock,

[u−E(u|I0)], after the end of the trading day. The idea is to examine the correlation between the two types

of returns over the sample trading days, at each preopening time stamp, to infer on price efficiency.29

28We have also used the current day opening price as a proxy of the fair value of the asset and results, available upon request,
are qualitatively similar to those reported herein. Note, further, that other prices obtained during the trading day can be
employed as fair value proxies; mid–day prices for example (Madhavan and Panchapagesan, 2000).

29Boussetta et al. (2016) also apply the unbiasedness regression technique to infer price efficiency in the Paris market. Our
approach, however, differs in that we construct separate prices on the basis of HFT and NON HFT quotes.
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We estimate the following linear regression at each preopening time t and over the sample trading days:

Rcc = a+ bRct + ε. (49)

If the slope coefficient b is equal to unity, then stock preopening tentative prices are efficient as they reflect

all market information at time t (It). By contrast, if b is different from unity, then indicative prices reflect

information plus some noise.30 In other words, the estimated b coefficient can be viewed as a signal to

noise ratio (Barclay and Hendershott, 2003). Notice that the variance of the residual term in equation

(49) is comparable to the residual variance obtained in equation (35), after conditioning on the linear rule

p = αs+ βQ.

[Figure 13 around here]

Figure 13 plots the average, across stocks and days, estimated b coefficients during the last 30 minutes of

the preopening for the three cases: i) Full book, ii) HFT book, iii) NON HFT book (upper graph). For the

actual market (the Full book), it is evident that prices gradually incorporate information until they become

fully efficient at the opening. According to the reported confidence intervals at the opening, the b coefficient

is statistically equal to unity at 09:00.31 Thus, there is evidence of a ‘learning’ pattern in the market, where

traders adjust their quotes according to the available public and private information. This learning pattern

is similar to that reported by Biais et al. (1999) and Boussetta et al. (2016) for the Paris market, as well as

by Ciccotello and Hatheway (2000) and Barclay and Hendershott (2003) for the NASDAQ, Comerton-Forde

and Rydge (2006) and Moshirian et al. (2012) for the Australian Exchange and Anagnostidis et al. (2015)

for the Athens Exchange.32 On the other hand, early prices are rather noisy, a feature that reflects the

fact that the significant bidding activity after 08:30 (see Section 4.3) does not convey information about

fundamentals, but rather reflects the strategic behavior of market participants.

30Note that stock price efficiency at the opening can also be examined using variance ratio statistics over daily data (e.g.,
opening and closing prices); see, for example, Stoll and Whaley (1990). The unbiasedness regression technique, however, is
advantageous, as it enables us to examine the dynamics of stock prices within the trading day. Further, by running a separate
regression for each consecutive time interval within the preopening, we avoid nonstationarity issues that arise due to price
adjustments as the price discovery evolves.

31Barclay and Hendershott (2003) point out that if stock returns are serially uncorrelated and measured without any errors,
then the slope coefficient b in equation (49) should be statistically equal to unity. Otherwise, because of the presence of various
microstructure effects that induce correlation into returns (e.g., temporary pricing errors and the non–synchronous trading
effect), b should become noisy, deviating from unity. As in Barclay and Hendershott (2003), in the present study we report
confidence intervals using the time–series standard errors from the coefficient estimates. We have also replicated the regression
analysis using Newey–West standard errors corrected for serial correlation and heteroscedasticity. Results, available upon
request for the interested reader, are qualitatively similar with those reported herein.

32Boussetta et al. (2016) utilize the SBF 120 Index constituents for years 2012 and 2013, whereas we utilize the CAC 40
Index (for year 2013) which includes the most liquid securities in the French market.
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Regarding the HFT market, early orders induce a significant amount of noise, a feature that suggests

their strategic behavior. Notice, for example, the sudden drop in price efficiency at 08:50, when the price

reversal occurs in the HFT market (see Section 4.4.1). Nonetheless, prior to opening HFTs increase their

order aggressiveness (i.e., competition for execution) and, as predicted by our model, they drive the price

toward its fair value. The information content of HFT indicative prices increases rapidly within the last

two minutes of the preopening, as b approaches unity. At the open, however, it is not statistically equal to

unity, suggesting that HFT prices still reflect some noise.

As for NON HFTs, the b coefficient pattern increases monotonically with time, hinting that NON HFTs

add information to the price formation process. It remains, however, rather low during the entire 30 minute

period, as it ranges approximately from 0.2 to 0.45. Thus, the signal to noise ratio is rather low in the

NON HFT market, compared to the HFT market. Notably, around 08:30 NON HFT indicative prices are

more efficient compared to HFT prices, although order submission activity for HFTs is significantly greater

compared to that of NON HFTs (see, Figure 10). This feature implies further the strategic effect of HFTs;

information is induced into prices with a smaller rate via HFTs’ orders, compared to those placed by NON

HFTs’. This argument is consistent with the model analysis presented in Section 3.2.

The visual evidence on the evolution of the estimated coefficient b for the three types of prices, depicted

in the upper graph in Figure 13, provides some first indication on the increased information content of HFTs’

quotes and their positive contribution to price efficiency. Nonetheless, a formal econometric test is needed

to compare the b coefficients and, therefore, to establish this result. To do so, we cannot use directly the

standard errors of the unbiasedness regressions, as in all cases the dependent variable is the close–to–close

return and, thus, the b coefficients are correlated. To test formally the difference between the informa-

tion content of the three types of prices, we first conduct a normality test for the difference between the

across stock average estimated b coefficients, for the three different cases: i) mean(b̂HFT )=mean(b̂NONHFT ),

ii) mean(b̂HFT )=mean(b̂FULLBOOK) and iii) mean(b̂NONHFT )=mean(b̂FULLBOOK) (Barclay and Hender-

shott, 2003). Figure 13 (middle graph) plots the evolution of the absolute value of the t-statistic during

the last 30 minutes of the preopening. Notice that, on average, the full book contains more information

compared to the HFT and the NON HFT order books. For most 1 minute time intervals the average

b̂FULLBOOK coefficient is statistically different (and greater according to the upper graph of Figure 13)

from the rest of the average estimated coefficients at the 5% probability level. We attribute this feature

to the fact that the full book aggregates information from both types of informed traders.33 Nonetheless,

33Consider, for instance, Figure 8 from the model analysis where under the presence of considerable noise (e.g., Z = 100),
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observe the difference between the estimated mean coefficients prior to open and at the open for the HFT

and the NON HFT market. This result suggests that HFT orders convey more information compared to

NON HFT quotes, consistent with the main assumption of our model that HFTs are able to generate private

signals with higher information content compared to the rest of the human trading public. Hence, we infer

that HFTs improve significantly price efficiency during the last minutes of the preopening by submitting

aggressive and meaningful, in terms of information, orders.

To corroborate our comparative results on price efficiency between HFTs and NON HFTs, we conduct

a second test based on the methodology proposed in Madhavan and Panchapagesan (2000). In particular,

upon estimating the b coefficient, we estimate a second stage regression using the residuals from the initial

regression as the dependent variable. Formally, we estimate the following regressions:

ε̂NONHFT = c+ dRHFTct + ε′ (50)

and

ε̂HFT = c+ dRNONHFTct + ε′, (51)

where ε̂NONHFT (ε̂HFT ) are the residuals obtained after estimating equation (49) using the NON HFT

(HFT) indicative returns, RNONHFTct (RHFTct ), as independent variable. If the d coefficient is statistically

different from zero in equation (50), then HFT prices have additional explanatory power over the NON HFT

prices. Conversely, if d is statistically significant in equation (51), then NON HFT prices have significant

predictive power beyond HFT prices. Results are plotted in the bottom graph in Figure 13. The percentage

of statistically significant d coefficient estimates (from the 36 stock regressions) is consistently higher in the

case where we use the RHFTct returns as an explanatory variable on the residuals from the unbiasedness

regressions with the NON HFT returns (first stage). This difference is more apparent at the opening, where

in almost 100% of regressions the HFT indicative prices have significant explanatory power on the NON

HFT prices. The inverse, however, is not true, since only in 64% of total regressions NON HFT prices have

explanatory power on HFT prices. Therefore, we infer that HFT quotes are, up to a certain degree, more

informative compared to the NON HFT quotes.

price efficiency is greater when both HFTs and slow informed traders increase their participation in the bidding process (e.g.,
K = M = 30).
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5 Conclusions

The present study examines the behavior of High–Frequency Traders (HFTs) in the single call market

mechanism. We develop a noisy rational expectations model where HFTs coexist in the market with NON

HFTs. In particular, the market includes two types of informed traders: fast HFTs and slow (human) traders.

Further, because of their ability to access multiple data streams, HFTs are able to collect information and

to form private signals that are more accurate compared to the signals that human informed traders obtain.

Our model predicts that when HFTs are present in the market, the information content of prices increases

significantly, however, to the extent that HFTs bid competitively. When HFTs become strategic, price

efficiency deteriorates.

To test the predictions of our model, we utilize a unique set of high frequency data from the Paris market

opening call. Our empirical results suggest that early in the preopening HFTs are absent. As the opening

time approaches, however, HFTs increase their bidding activity. Our evidence indicates, also, that HFTs act

strategically. In particular, HFTs submit their orders half an hour before the opening time, whereas they

modify/cancel a large fraction of these orders just before the opening, while submitting new (or revised)

and aggressive orders. Accordingly, and consistent with our model prediction, earlier in the preopening as

well as minutes before the opening prices reflect noise (effect of strategic trading). Just before the opening,

however, price efficiency increases sharply as HFTs submit aggressive and large orders with the intention of

having them executed.

Our results add to a growing part of the microstructure literature that examines the characteristics of

HFTs in electronic call markets and the effect that HFTs have on the quality of clearing prices. The call

auction mechanism is a useful tool for revealing prices after extensive periods of no trade (e.g., opening

of markets) or after periods of market instability (e.g., trading halts) and, therefore, the understanding of

HFTs’ activities in such a trading environment as well as their effect on the price formation process is of

critical importance. Yet, there are several questions to be answered before we reach a consensus on the role

of HFTs in call auction trading. Future research could focus on the investigation of potential links between

HFTs’ order placements strategies in call auction markets and the subsequent continuous trading (e.g., after

the opening or after a trading halt).
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Tables

Table 1: Preopening order flow for the CAC 40 sample.

Time 07:15–07:30 07:30–07:45 07:45–08:00 08:00–08:15 08:15–08:30 08:30–08:45 08:45–Open

HFT
Submit total 385.0 149.0 14,937.0 3,620.0 2,265.0 2,018,873.0 1,029,859.0

Submit average 0.0 0.0 1.6 0.4 0.2 220.8 112.6
Average size 1,807.0 813.3 2,173.6 673.9 823.3 192.1 667.9
Modify total 0.0 0.0 0.0 0.0 5.0 570.0 334,694.0

Modify average 0.0 0.0 0.0 0.0 0.0 0.1 36.6
Cancel total 6.0 10.0 6.0 145.0 1,166.0 3,620.0 279,430.0

Cancel average 0.0 0.0 0.0 0.0 0.1 0.4 30.6

MIXED
Submit total 80.0 336.0 3,052.0 245,510.0 29,949.0 102,097.0 1,188,136.0

Submit average 0.0 0.0 0.3 26.8 3.3 11.2 129.9
Average size 2,776.0 3,729.1 1,486.7 2,095.0 2,432.8 1,824.3 5,938.6
Modify total 4.0 87.0 1,877.0 2,178.0 1,759.0 6,013.0 538,900.0

Modify average 0.0 0.0 0.2 0.2 0.2 0.7 58.9
Cancel total 4.0 9.0 812.0 24,847.0 14,088.0 9,346.0 304,282.0

Cancel average 0.0 0.0 0.1 2.7 1.5 1.0 33.3

NON HFT
Submit total 546,131.0 475,968.0 198,644.0 147,416.0 77,681.0 958,569.0 295,765.0

Submit average 59.7 52.1 21.7 16.1 8.5 104.8 32.3
Average size 216.8 187.0 338.9 288.8 653.2 779.8 1,373.8
Modify total 587.0 599.0 280.0 374.0 278.0 2,299.0 160,165.0

Modify average 0.1 0.1 0.0 0.0 0.0 0.3 17.5
Cancel total 54,282.0 83,630.0 83,286.0 20,355.0 18,608.0 18,584.0 54,548.0

Cancel average 5.9 9.1 9.1 2.2 2.0 2.0 6.0
This Table reports the average and total (sum), across days and stocks, number of new submissions, revisions and cancellations
during the preopening and in 15 minute intervals, for each type of trader in the data set; HFT, MIXED and NON HFT. Zero
averages (0.0) represent very small values (< 0.1). For submissions, the, across days and stocks, average order size is also
reported.
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Table 2: Opening statistics for the 36 stock sample from the CAC 40 Index.

BUY BUY BUY SELL SELL SELL
HFT MIXED NON HFT HFT MIXED NON HFT Trades Trades Volume Value

Security (%) (%) (%) (%) (%) (%) (%) average average average

Accor 4.3 60.8 35.0 4.4 48.2 47.4 1.2 46.9 8,953.6 262,413.0
Air Liquide 5.9 39.1 55.1 3.1 34.7 62.2 1.9 124.1 13,806.2 1,343,993.7
Axa 4.4 45.3 50.3 4.0 36.0 60.0 1.5 145.5 96,130.2 1,533 514.0
BNP Paribas 4.0 42.4 53.6 2.9 34.8 62.3 1.1 179.3 57,957.6 2,728,559.1
Cap Gemini 6.9 46.0 47.1 6.2 40.9 52.9 1.2 58.5 8,940.1 356,822.5
Carrefour 4.6 49.8 45.6 5.2 45.8 49.0 1.3 89.4 30,825.1 709,855.6
Credit Agricole 6.8 20.3 72.9 5.5 20.7 73.8 2.1 190.0 126,248.8 959,861.9
Danone 3.0 66.9 30.0 3.0 50.7 46.4 1.3 92.5 27,963.2 1,529,767.4
Lvmh 4.5 49.2 46.3 4.4 48.4 47.2 1.6 106.8 13,617.0 1,838,125.0
Michelin Nom. 6.8 49.7 43.6 3.1 31.8 65.1 1.6 103.9 10,707.6 775,199.2
L’Oreal 5.4 54.4 40.2 4.5 45.8 49.8 1.5 80.6 9,845.7 1,209,364.8
Pernod Ricard 7.2 56.7 36.1 4.0 52.6 43.4 1.2 61.9 7,246.9 654,519.6
Kering 4.9 54.1 41.0 4.9 45.9 49.2 1.4 47.8 2,992.8 494,872.3
Saint Gobain 6.2 54.7 39.1 4.5 43.4 52.2 1.1 79.3 22,456.8 748,897.3
Schneider Electric 5.0 57.0 38.0 5.1 53.3 41.7 0.9 78.9 19,869.7 1,176,372.9
Total 3.2 44.3 52.5 3.7 36.0 60.3 1.4 189.6 82,860.6 3,339,932.5
Veolia Environn. 6.1 37.8 56.1 6.3 37.0 56.7 1.4 79.4 34,383.7 374,904.4
Vinci 3.6 45.5 50.9 4.0 34.3 61.8 1.6 115.9 25,525.7 1,016,483.0
Vivendi 6.4 45.6 47.9 5.1 41.2 53.7 1.8 120.8 73,438.7 1,211,928.8
Essilor Intl 5.1 49.0 45.9 3.8 52.7 43.5 1.4 75.7 8,571.6 689,196.2
SAFRAN 3.2 40.5 56.3 2.6 41.2 56.2 1.8 78.8 11,744.4 485,001.1
Bouygues 6.7 44.7 48.6 6.1 43.6 50.3 1.2 54.8 11,908.5 278,165.5
Publicis Groupe 5.6 58.7 35.7 4.9 53.8 41.3 0.9 44.0 6,749.9 389,673.0
Societe Generale 3.8 35.6 60.5 3.9 30.7 65.4 1.0 170.5 63,474.1 2,063,893.2
Technip 7.6 40.7 51.7 4.9 48.7 46.4 1.5 82.4 8,392.0 664,720.3
Renault Group 4.6 51.8 43.7 5.8 42.0 52.2 1.0 77.9 15,921.1 888,674.5
Airbus Group 2.6 41.0 56.4 1.9 24.1 74.0 1.8 194.4 40,984.7 1,772,246.1
Lafarge 6.2 38.9 54.8 6.0 33.3 60.7 1.5 84.8 8,687.1 433,775.4
Stmicroelectronics 9.5 41.7 48.8 8.5 46.9 44.7 1.0 41.9 32,015.2 203,453.4
EDF 3.0 40.2 56.8 3.4 21.8 74.8 2.4 117.4 24,131.0 465,484.1
Alstom 5.6 31.8 62.6 6.4 37.2 56.4 1.7 103.0 21,355.4 599,144.3
Vallourec 7.2 38.6 54.2 6.3 38.7 55.0 1.4 67.9 8,679.3 365,233.8
Engie 3.9 46.9 49.3 2.9 30.2 66.9 2.4 169.8 71,119.6 1,164,081.3
Legrand 3.6 61.7 34.7 2.7 53.1 44.1 1.3 41.3 7,831.7 290,675.1
Orange 4.3 35.6 60.1 3.4 32.5 64.1 1.6 168.0 127,862.4 1,069,817.0
Sanofi 4.4 50.5 45.1 3.5 48.0 48.5 1.1 147.2 52,700.8 4,042,025.7

Average across stocks 5.2 46.3 48.5 4.5 40.5 55.0 1.4 103.1 33,219.4 1,059,184.6

Out of sample Platform negotiated

Solvay Belgium
Gemalto the Netherlands
Unibail-Rodamco the Netherlands
ArcelorMittal Reg Luxembourg

Clearing at the open: HFT, MIXED and NON HFT percentage on the buy and sell side (the percentage for each of the three
categories and for each market side is calculated as the total number of flagged trade messages relative to the total number of
opening trade messages), percentage of opening trades relative to total daily trades, average number of trades, average clearing
volume (shares) and average trading value (Euros). Four stocks from the CAC 40 Index are excluded from our analysis as they
are not negotiated on the Paris platform.
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Figure 1: Price efficiency with respect to ωF . The following parameters are fixed: A = 3, Z = 5, σ2
u = 0.1, σ2

S = 0.5, σ2
F = 0.12,

σ2
Q = 0.2, ωS = 0, λ = 0.5.
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Figure 3: Price efficiency with respect to ωF . The following parameters are fixed: A = 0, Z = 5, σ2
u = 0.1, σ2

S = 0.5, σ2
F = 0.12,

σ2
Q = 0.2, ωS = 0.5, λ = 0.5.
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Figure 4: Price efficiency with respect to σ2
F . The following parameters are fixed: A = 3, Z = 5, σ2

u = 0.1, σ2
S = 0.5, σ2

Q = 0.2,
ωF = 0, ωS = 0, λ = 0.5.
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Figure 10: The across stocks and days average number of submissions, modifications and cancellations during the last 30
minutes of the preopening, in 1 minute intervals.
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Figure 11: Top graph: The across stocks and days average percentage of total available shares on the order book due to HFT
(HFT and MIXED in the data set) and NON HFT quotes. Middle graph: The across stocks and days average number of
shares on the order book due to HFT and NON HFT quotes. Bottom graph: The across stocks and days average percentage
of aggressive (i.e., executable) shares on the order book due to HFT quotes.
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Figure 12: Top graph: Cumulative Weighted Price Contribution statistic during the last 30 minutes of the preopening
for the three cases: HFT, NON HFT and FULL BOOK. WPC is calculated for each sample day as follows: WPCk =
Nstocks∑

i=1

(
|∆P i|∑Nstocks

i=1 |∆P i|

)
×
(

∆Pk,i

∆P i

)
, where ∆P i is the total logarithmic price change from 08:30 to 09:00 (opening) for

stock i (i = 1, ..., Nstocks) calculated on the basis of the full set of orders and ∆Pk,i is the logarithmic price change for interval
k, k = 1, ..., 29, calculated for the three cases (HFT, NON HFT and FULL BOOK). Then, for each k interval WPC is averaged
across days. Bottom graph: The across days and stocks average 1 min return, ∆Pk, k = 1, ..., 29, during the last 30 minutes of
the preopening for the three cases: HFT, NON HFT and FULL BOOK. Together is plotted the across days and stocks total
price change from 08:30 to 09:00, ∆P , calculated using the full book (horizontal line).
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Figure 13: Upper graph: estimated unbiasedness regression b coefficients during the preopening along with the corresponding
95% confidence intervals at the opening, obtained by using i) the FULL BOOK, ii) the HFT BOOK and iii) the NON HFT
BOOK indicative prices in equation (49). Middle graph: the absolute value of the t-statistic for the null hypothesis of across–

stocks equal mean b for the following cases: i) mean(b̂HFT )=mean(b̂NONHFT ), ii) mean(b̂HFT )=mean(b̂FULLBOOK) and

iii) mean(b̂NONHFT )=mean(b̂FULLBOOK). Bottom graph: The percentage of statistically significant d coefficient estimates
from equations (50) and (51), for the following cases: i) NON HFT indicative returns (RNONHFT

ct ) in first stage as independent
variable and HFT indicative returns (RHFT

ct ) as independent variable in second stage, ii) HFT indicative returns (RHFT
ct ) in

first stage as independent variable and NON HFT indicative returns (RNONHFT
ct ) as independent variable in second stage.
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Appendix A

This Appendix provides a list of the model parameters presented in Section 3:

u: ex–post liquidation value of the asset

σ2
u: variance of u

K: number of Fast informed traders

M : number of Slow informed traders

L: number of uninformed traders

Z: number of noise traders

W : terminal wealth

A: risk aversion coefficient

QF : demand function for Fast informed traders

QS : demand function for Slow informed traders

QU : demand function for uninformed traders

Q: random demand for noise traders

U : utility function

ωF : price elasticity factor for Fast informed traders

ωS : price elasticity factor for Slow informed traders

ωU : price elasticity factor for uninformed traders

s: the private signal

e: the error term of the private signal

σ2
e : true variance of the error term of the private signal

σ2
F : variance of the error term of the private signal for Fast informed traders

σ2
S : variance of the error term of the private signal for Slow informed traders

σ2
U : variance of the error term of the private signal conjectured by uninformed traders

λ: the weight uninformed traders place on σ2
F and σ2

S when conjecturing the linear price rule

p: the market price

α: coefficient of s in the linear pricing rule conjectured by uninformed traders

β: coefficient of Q in the linear pricing rule conjectured by uninformed traders
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Internet Appendix

Price efficiency and High Frequency Trading in call auctions

(Supplementary material)

P. Anagnostidis, P. Fontaine, C. Varsakelis

This Internet Appendix provides supplementary material for the theoretical model developed in Section 3.

In particular, Section I provides analytical formulas for the partial derivatives of price efficiency, as defined

in equation (33), with respect to the model parameters: K (number of HFTs), M (number of slow informed

traders), σ2
F (variance of HFTs’ signal), σ2

S (variance of slow informed traders’ signal), ωF (price elasticity

factor for HFTs), ωS (price elasticity factor for slow informed traders), σ2
U (variance of informed traders’

signal that uninformed traders conjecture), A (risk aversion coefficient) and Z (number of noise traders).
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