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ABSTRACT

We propose a Marshallian model for price and quantity adjustment in parallel continuous

double auctions. Investors submit orders only for small quantities, and at prices that max-

imize the local utility improvements. Pareto optimality, on which equilibrium asset pricing

theory is built, is eventually reached. Experiments designed with the CAPM in mind show

that, consistent with the theory (i) contrary to the standard Walrasian price adjustment

model, price changes cross-autocorrelate with excess demands depending on covariances of

liquidating dividends; (ii) a risk-weighted endowment portfolio is closer to mean-variance

optimality than the market portfolio; (iii) individual portfolios are under-diversified, and

more so when dividend covariances are positive.
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General equilibrium theory (see, e.g., Campbell (2000)) has become the accepted model

for competitive markets and is the benchmark against which those markets are typically

analyzed. In relation to its finance application, Cochrane (2001) refers to the general equi-

librium models as the purest example of “the absolute approach to asset pricing,” where

“we price each asset by reference to its exposure to fundamental sources of macroeconomic

risk.” The classical example of a widely studied class of asset pricing models is the class

of portfolio-based models, where the price of each security is determined relative to some

benchmark. In the Capital Asset Pricing Model (CAPM), for instance, the prediction is that

all assets are priced such that the market portfolio is mean-variance optimal, i.e., it provides

the maximum expected return for its risk, as measured by the variance of its returns.

While theoretically appealing, the empirical shortcomings of the standard asset pricing

models are well recognized. Many recent theoretical developments aim at addressing those

shortcomings, while keeping the tenet of equilibrium intact.1 In particular, the extant asset

pricing literature has augmented the base model with, among others, more complex indi-

vidual preferences, more realistic modeling of utilities behind observed choices, and richer

stochastic environments. Those models provide analytical (or computational) tractability

but by construction they are subject to what is probably the oldest criticism of the equi-

librium approach (accompanying it since its inception, see Walras (1874-77) and Marshall

(1890)), namely that it is silent about the adjustment process through which markets arrive

at the equilibrium prices and allocations.

Without the understanding of when and how markets equilibrate, the properties of the

empirical tests would depend on the choice of sampling frequencies for the pricing data. In-

deed, unless one assumes that markets are always in equilibrium, there is little evidence that

end-of-period prices and holdings present anything but arbitrary points in the adjustment

process. If that is the case, it should not come as a surprise that the end-of-month market

1Among the influential models have been those of Bansal and Yaron (2004), Campbell and Cochrane
(1999), and Epstein and Zin (1989). An up-to-date review of those models can be found in Cochrane (2016).
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portfolio is not mean-variance optimal and that investors are under-diversified, in violation

of the CAPM.

This paper lies in the intersection of the economics and the finance branches of the general

equilibrium literature and the reason we note the distinction is that the two appear to have

zoomed in on different properties of the underlying model (see Magill and Quinzii (1996)).

The former is predominantly concerned with the existence of equilibrium and its (Pareto)

optimality properties2, while the latter has focused on the equilibrium pricing relationships.

Contributing to both branches of the literature, while also addressing the criticisms of

the equilibrium approach, here we study the possibility for imposing reasonable pricing

restrictions even off equilibrium. Specifically, this paper proposes a theory of price discovery

in the context of simultaneous multiple markets accompanied with a rigorous experimental

test. In the spirit of the CAPM and other factor models, we theoretically identify and

empirically confirm the existence of a portfolio that continuously determines the prices of all

securities even when markets are off equilibrium.

Both in the theory and in the experimental design, the aspiration is to allow the markets

to achieve Pareto optimality, a weaker condition than insisting that markets eventually

converge to the global equilibrium of the economy.3 Aside from its desirability from a social

welfare point of view, markets operating under Pareto optimality is a necessary feature of a

sensible off-equilibrium asset pricing model. Only with it in place, can we establish a clear

parallel between an off-equilibrium theory and the standard representative agent equilibrium

model.4

2Under Pareto optimality, it is impossible to re-arrange allocations such that at least one individual is
better off, and nobody is worse off.

3In the special case of investor preferences that generate the CAPM equilibrium, the conditions for
convergence to the global equilibrium and the Pareto set coincide.

4With generic preferences, the construct of a representative investor exists if and only if allocations are
optimal. This means that the equilibrium pricing relationships would hold as long as an optimal allocation
is achieved, even if this allocation is not the equilibrium under the original initial endowments. In this
sense, any rejection of an asset pricing theory is very powerful as it not only rejects that the markets are
in equilibrium but it also rejects that the markets have achieved an optimal allocation under the assumed
preferences.
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The proposed theory employs local competitive equilibrium concepts that require that

only small orders be submitted. We discuss the assumptions of the model at length later, but

we should mention that small orders can easily be justified empirically, and probably with

less effort, backed empirically. The market organization we focus on is the continuous double

auction (CDA). CDA is the market institution of many exchanges, including NYSE. Con-

trolled experiments have long demonstrated that the CDA facilitates convergence to Pareto

efficient allocations.5 Within this market institution trade happens even when markets have

not yet equilibrated. At the same time, final allocations are shown to be optimal–not only in

simple one-market settings as in Smith (1962) but also in much more complex, multi-market

environments, as in Plott (2001).

The goal in this paper is to provide a descriptive model and explain how rational agents

behave in examples of the CDA: what is the mechanism that drives the changes in prices

and allocations?6 The leading assumption of the model, on which we elaborate later, is that

trade intensity is the highest for those agents who are willing to pay the most or accept

the least for the traded goods/assets. Specifically, investors submit bids that monotonically

relate to their initial marginal valuations of the assets. All transactions occur at a local

equilibrium price, equal to the average of all bids. As imposed by the above assumption,

those with more to gain trade at a faster rate. As trades execute, marginal valuations for

the traded assets change, along with the rates at which agents trade. Agents at all times

make offers that, if executed, would secure maximal local growth in their utilities. We call

this a “local Marshallian equilibrium” theory, in the spirit of Marshall (1890).

Guided by an important interplay between theory and experimental evidence, we study

two versions of this theory. The first one we call “the original Marshallian adjustment,”

where prices and quantities adjust concurrently. In the second, that we call the “lagged

theory,” prices move faster than agents are able to adjust their offer quantities. We derive

5In light of the recent work of Budish, Cramton, and Shim (2015), an intermittent call market, or a
“frequent batch auction” market desing shoud also fall into the category of market institutions for which our
theoretical treatment applies.

6We do not provide a normative prescription about how agents should behave.
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implications for price and allocation dynamics in the two settings and study the validity

of these implications in a controlled experiment that is known to generate the CAPM (see

Asparouhova, Bossaerts and Plott (2003)). While the paper presents the theory in its most

general form, the main theoretical and empirical findings are best illustrated in the simple

setup of this experimental economy.

In a short digression, borrowed from Asparouhova et al., we defend the empirical method-

ology of this paper. “Controlled experimentation with markets is not standard methodology

in empirical finance, and thus we first must address why we think our exercise has value.

We believe that experimentation itself should not be an issue. Controlled experiments are

the foundation of science. That experimentation is still rare in finance is likely due to the

difficulty researchers face in designing experiments that are informative. We argue that ex-

periments can be informative even if the experimental setting does not match exactly the

real world. The goal of experiments is, in the first place, to test the veracity of theory in a

setting where confounding factors are eliminated as much as possible.”

Controlled environment is a necessity when addressing a fundamental question like the

one this paper poses. The experimental design presented here represents a realistic setting,

yet with minimal complexity. Real people trade for real money in real markets, and their

task captures the main aim of CAPM agents, namely diversification. Our design includes

humans and does not allow for algorithmic trading and thus the experiment does not provide

a faithful replication of the field.7 However, the first step in any meaningful endeavor that

aims at uncovering and modeling off-equilibrium patterns in asset pricing must be in the

simplest possible trading environment that can fit under the basic asset pricing paradigm.

In the experiments, participants start with a portfolio of two risky assets, called A and B,

a risk free asset, called N (notes), and some cash. During a short period of time (15 minutes

or less), they can trade in a anonymous, computerized, continuous open-book system. The

goal is to trade to an optimal portfolio of assets and cash. This optimum depends on the

7The issue of the interaction of humans and robots (including high frequency algorithmic traders) is part
of our ongoing research.
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participants’ objective function that is assigned by us, the experimenters. Participants only

know their own incentives and that everyone else has equal access to the computerized

markets. After markets close, participants are paid real money depending on how close their

final allocations are to their optimum.

In the theory we show that individual allocations converge towards a Pareto optimal

point. On the path towards Pareto optimality, the portfolio with the highest Sharpe ratio

is easily identifiable. This portfolio converges to the market portfolio of stocks A and B

only at the end. On the convergence path, the weight on each stock is proportional to the

average holding of that stock across investors. With this weighting scheme, higher weights

are attributed to those investors who are more risk averse. We call the portfolio “the risk-

aversion-weighted endowment” (RAWE) portfolio. As the adjustment process approaches

Pareto optimality, the RAWE portfolio converges to the market portfolio of Stocks A and

B.

Asset pricing is consistent with the Marshallian model if the RAWE portfolio has the

highest Sharpe ratio. Conversely, assuming that the economy is in a local Marshallian

equilibrium, one can use the RAWE portfolio to price the traded assets.

In the lagged theory an important regularity emerges along the equilibration path. Price

changes in one asset correlate positively with excess demand in the other asset when asset

payoffs (liquidating dividends) are positively correlated. Price changes anti-correlate with

excess demand when the asset payoffs are negatively correlated. It should be noted that

this relationship induces cross-autocorrelations in price changes. Lo and MacKinlay (1990)

show that such cross-autocorrelations might be behind momentum in returns. Empirically,

Lewellen (2002) shows that indeed those cross-correlations play an important role. Our

model demonstrates that cross-correlations can be a consequence (or a sign) of markets that

have not equilibrated yet.

To conclude, the theory presented in the paper relies on two assumptions that date

back to Marshall (1890), namely that agents submit small orders and that trade intensity is
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proportional to the gains from trade. At the same time, the implications of the model are

vastly different, and more so when assets have positively correlated payoffs, from that of the

equilibrium model.

Turning to the empirical tests, we first document to what extent trading through the

continuous open-book system improves the collective welfare. In our setting, there is a

unique allocation that provides maximum total gains. Hence, we compare payoffs at initial

endowments with payoffs at final holdings, after markets close. We also compare the final

payoffs against the hypothetical maximal possible total payoffs. While significants gains

from trade are realized, we find that the final allocations fall short of fully achieving Pareto

optimality.

We test the original vs. the lagged adjustment theories and find that price changes are

better explained by the lagged theory of adjustment. To enable such tests, we have two

market conditions. One is where stock A and B’s payoffs are positively correlated, and the

other is where they are negatively correlated. Our results provide overwhelming support for

the prediction that prices and excess demands for securities cross-correlate according to the

sign of the payoff correlation. Price dynamics of Stock A and B change significantly and

according to the sign of the payoff correlations. This evidence is consistent with the lagged

theory but not with the original adjustment theory.

The optimality of the RAWE weighted portfolio, predicted by the lagged theory, is also

upheld in our experiments, though the evidence is less clear when the payoff correlation

between stocks A and B is positive. As we pointed out above, one can turn around these

findings, and use at any time the RAWE-weighted portfolio in order to predict prices–the

price configuration should be such that the RAWE weight portfolio is optimal.

Since participants fail to fully exploit potential gains, the market adjustment process

is incomplete. Consequently, final holdings provide a snapshot of the adjustment process

before full Pareto optimality is reached. If our theoretical predictions are true, then final

holdings across the two treatments (positive and negative payoff correlations between stocks
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A and B) should be significantly different. Specifically, we expect individual portfolios of

Stocks A and B to be closer to the market portfolio when correlations are negative. This is

exactly what we find, and since payoffs of stocks are generally positively correlated, it is in

line with the behavioral finance finding of investor under-diversification.

Our findings have implications for the organization of centralized markets. Specifically,

frequent (in our case continuous) clearing is important, and markets need to be competitive

for small quantities. This way, markets manage to exploit the local optimization that partic-

ipants resort to, and push trades in the direction of maximum utility improvements. Many

electronic stock markets in the world (like Euronext and NYSE) are organized as continuous

double auctions. In a call market like the London Gold Market, however, participants can-

not make gradual adjustments in the direction of maximal gains; instead, all exchanges have

to take place at once, at prices that are determined by a lengthy Walrasian tatonnement

process (meaning that prices are adjusted in the direction of excess demand). As such, “free

markets” per se would not guarantee optimal allocations, instead, the rules of engagement in

the exchange process are what is crucial for Pareto optimality to emerge. This is related to a

robust finding from experimental economics (see Smith (1989)), that only specific exchange

mechanisms generate the competitive equilibrium.

Our findings also imply that the widely held belief that market prices adjust in the direc-

tion of excess demand (prices increase when there is excess demand; decrease when there is

excess supply) does not necessarily apply, at least as far as the continuous double auction is

concerned. Cross-correlation between price changes and excess demand in other assets con-

found this relationship. At times, the confounding effect can be sufficiently severe for there

to be no (simple) correlation between price changes and excess demand (see Asparouhova,

Bossaerts and Plott (2003) and Asparouhova and Bossaerts (2009)).

The rest of the paper is organized as follows. Section I provides the background for

the research endeavor, Section II presents the typical experimental design and empirical

summary from past experiments, then Section III presents an informal version of the theory.
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The formal version of the model is presented in Section IV. The experimental evidence

and the implications for the broader finance studies are in Sections V and VI respectively.

Section VII concludes.

I. Background

Theoretically, out-of-equilibrium market behavior has been described by two alternative

dynamic models, the Walrasian and the Marshallian. The predominant one has by and large

been the Walrasian model, described with the aid of the fictitious auctioneer and the corre-

sponding tatonnement process. In this process, upon announcement of a price, all traders

submit their desired orders which are awarded execution if there is no excess demand, or else

the price is adjusted in the direction of the excess demand. No exchange takes place before

prices reach equilibrium. The Marshallian adjustment process is described by Leijonhufvud

(2006) as “what we today label agent-based economics. Recall that Marshall worked with

individual demand-price and supply price schedules. [And] the demand-price and supply

price schedules give rise to simple decision-rules that I like to refer to as “Marshall’s Laws

of Motion.” For consumers: if demand-price exceeds market price, increase consumption; in

the opposite case, cut back.”8

A lot of the theoretical effort has been expended in finding constraints on preferences

that would ensure that the adjustment processes converge to the Walrasian equilibrium. A

rather small fraction of the equilibration literature, but most relevant to our study, is the

one that has studied the possibility of out-of-equilibrium trading and the conditions that

8See Leijonhufvud (2006) for an illuminating discussion about the “methamorphosis of neoclasicism.”
Relevant for our motivation and discussion is his observation that “In the early decades of the twentieth
century, all economists distinguished between statics and dynamics. By “dynamics,” they did not mean
intertemporal choices or equilibria but instead the adaptive processes that were thought to converge on
the states analyzed in static theory. [...] The conceptual issues that divide old and modern neoclassical
theory are both numerous and important. [...] If observed behavior is to be interpreted as reflecting optimal
choices, one is forced to assume that economic agents know their opportunity sets in all potentially relevant
dimensions. If this is true for all, the system must be in equilibrium always.”
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must be imposed on the trading rules to guarantee that the economy arrives at a Pareto

optimal allocation (e.g., Negishi (1962), Hahn and Negishi (1962), Uzawa (1962), Hurwicz,

Radner, and Reiter (1975), Friedman (1979), and Fisher (1983)). A formal overview of

General Equilibrium, Walrasian and Marshallian dynamics is provided in Section Appx.A of

the Appendix.

Perhaps not surprisingly, the equilibration models do not specify a particular market

mechanism to which they can be applied. The market organization we focus on is the con-

tinuous double auction (CDA). One major reason for our focus is that controlled experiments

have long demonstrated that the CDA facilitates emergence of Pareto efficiency, see Smith

(1962) and Plott (2001). What makes Pareto efficiency extremely demanding from a central

planner’s point of view, is that beneficial re-allocations require full knowledge of every indi-

vidual’s preferences. At the same time the institution of continuous double auction is known

to generate Pareto optimality without anyone having knowledge of others’ preferences. To

accomplish this, markets effectively need to solve a set of, often highly nonlinear, equations

the parameters of which no individual participant knows. In this paper we aspire to provide

a model that explains the above equilibration dynamics in a CDA as the aggregation of

locally optimal choices of individuals.

In the continuous double auction, individuals (agents; participants) can submit bids (to

buy) or asks (to sell) at any price, and whenever the highest bid is at a price above the lowest

ask, a trade takes place immediately. In modern instances of the double auction, called the

open-book system, bids and asks that are surpassed by more competitive orders (bids at a

higher price or asks at a lower price) remain available for later, unless they are canceled.

The open book system is the preferred exchange mechanism of financial markets around the

world, and in particular, stock exchanges (NYSE, Euronext, LSE, NASDAQ, etc.).
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II. Some Sylized Facts From Experiments

Before proceeding with the proposed theory, we present some experimental evidence as

it relates to the adjustment models.

A. The Structure of Market Experiments

For those unfamiliar with markets experiments, a brief introduction follows. Participants

are solicited, usually via email invitations, to come and participate in an experimental session

at a given location (or, in some instances, access the experiment online) and at a given

time. Each experimental session starts with an instructional period, where the rules of

engagement are explained, participants are given the opportunity to ask questions, familiarize

themselves with the trading software and and participate in a practice trading session. An

experiment proceeds in a series of replications, called periods. At the beginning of a period

each participant i is given an initial endowment of commodities (or financial assets), wi.

Markets open and participants are free to trade subject to the usual budget constraints.

Trading occurs via a market institution of the experimenter’s choice. At the end of a period,

participant i will have traded di and will have final holdings of xi = wi + di. Participants

receive payments according to a payoff function ui(xi), specified by the experimenter and

presented to the participants during the instructional period. In some experiments all periods

are payoff-relevant. In others, participants go over several periods and only some are chosen

at random to be payoff-relevant.

Two standard trading institutions used in experiments are the Continuous Double Auc-

tion (CDA) and the Call Market (CM). The CDA is a trading process in which participants

post limit buy and sell offers by specifying quantity and price (for example, a limit buy offer

is an offer the buy a specified quantity at or below the offer price; offers are usually valid

until canceled or executed, i.e., there is usually no option to have the offers lapse). In most

cases the offers are displayed in an open book, i.e, they are visible to all participants. (In
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experimental dark pools, not discussed in this paper, only some, if any, of the offers are pub-

licly displayed.) Those offers can be accepted by others. When accepted an offer becomes

part of a transaction and it is withdrawn from the order book. The CDA can be thought as

an example of a system that facilitates non-tatonnement dynamics.

In a call market, participants also post buy and sell offers by specifying quantity and

price but, contrary to the CDA, no transaction occurs or is accepted until the market is

“called.” If the book is closed (i,e, subjects cannot see each others’ bids), this is just a sealed

bid auction. If the book is open (i.e., participants can see each others’ bids) and subjects can

withdraw their bids and submit new ones, the call market becomes an example of a system

that facilitates the tatonnement dynamics.

B. Findings from Market Experiments

Easley and Ledyard (1992) examines data from single-commodity CDA markets (pre-

sented in a partial equilibrium setting to the participants but equivalent to an environment

with two commodities and quasi-linear preferences). These markets involve a series of peri-

ods with period-invariant payoff functions. The authors study the upper and lower bounds

on prices for each period. They find that bounds respond from period to period as pre-

dicted by the Walrasian model–that is, after a period with excess demand at the upper

bound, the upper bound at the following period would be higher. They also find that prices

within a period respond to the participants’ marginal willingness to pay (accept), as in the

“Marshallian” dynamic system. Finally, they find that initial trades respond stronger to

excess demands at the previous period’s price bounds while later trades respond more to

local information such as the gradients of the utility/payoff functions. Thus, initial trades

within a period seem to be guided by Walrasian dynamics, while later trades are guided by

Marshallian dynamics.
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Anderson, e.a. (2004) examines the dynamic behavior of prices in the context of environ-

ments closely related to those in Scarf (1960). These are particularly interesting environments

in that the Walrasian dynamic does not always lead prices to converge to the unique market

equilibrium. The experiments also involves a series of periods. A quick summary, that does

not do justice to the paper, is that across-period price dynamics are consistent with the

Walrasian tatonnement and within-period price dynamics are not. More precisely, average

prices move from period to period in a manner predicted by the tatonnement model, even

though the CDA is not a tatonnement system. On the other hand, Anderson, e.a. (2004)

uncover no such relationship for within-period trades and prices. The data from the reported

experiments does not conform to either the standard Walrasian or Marshallian models (both

of which are presented in section Appx.A.3 in the Appendix).

Biais, Bisiere, and Pouget (2013) study the effect of preopening mechanisms in experi-

mental markets. They find that when call auctions are preceded by a binding preopening

period, subsequent gains from trade are maximized. Pouget (2007) studies experimentally

the institutions of call market and the Walrasian tatonnement and finds that the latter is

more conducive to learning of the equilibrium strategies. A detailed overview of experimental

findings on market equilibration dynamics is provided in Crockett (2013).

III. An Informal Version of Our Theory

In the proposed Marshallian adjustments theory individuals express willingness to trade

in the direction that provides the biggest local improvement to their portfolio, at prices

that reveal their true valuation for the proposed trades. We assume that agents with higher

willingness to pay or lower readiness to receive trade more intensely. This simple trading

rule is well adapted to the continuous double auction as long as it is “competitive in the

smalls.” It means that, as long as everyone submits orders for small quantities, individuals

cannot influence where the market is going–i.e., they take the aggregate order arrivals and
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order prices as given. This simplifies market interactions: individuals cannot manipulate the

market and thus they do not need to think strategically. The assumption of small orders

is reasonable when markets are comprised of many traders each with a small endowment in

comparison to the aggregate endowment, and each lacking the structural knowledge (other

traders’ positions, preferences, strategic sophistication, etc.) needed to successfully manip-

ulate the market by submitting a large order. Independent of the theoretical setup, the

assumption of small orders has strong empirical support. For example, competition with

small orders is documented in institutional trading, see Rostek and Weretka (2015).9

Similar in spirit to our trading intensity assumption, the model of Rostek and Weretka

(2015) delivers an equilibrium prediction that agents (who are firms in the model) submit

demands in small orders, and those facing the highest gains from trade transact more quickly.

This procedure necessarily achieves Pareto optimality in its asymptotic resting point. In a

recent paper, Kyle and Lee (2017) propose an alternative to the CDA mechanism, where

trade is in flows. The intensity of trade in our model corresponds to the flow rate in theirs.

The Marshallian Local Theory raises a practical issue. Price adjustment in CDAs often

occurs at a speed far beyond the speed of adjustment of individual orders. By the time an

agent has canceled old orders and submitted new orders, prices may have changed a number

of times. So, we investigate what happens if offers move with a lag compared to prices.

While more practically appealing, this model sacrifices a Pareto optimal destination in the

most general case. There is, nevertheless, a case of interest in which convergence to Pareto-

optimal allocations can be proven. This is the case of quasi-linear preferences that are the

preferences employed for the CAPM model of finance.

9The paper provides a summary of empirical evidence and develops a model of firm optimization in such
an environment. We thank Sean Crockett for pointing us to this study.
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IV. A Formal Local General Equilibrium Theory

We advance an equilibration theory for markets where price-taking only applies to small

orders. At its core is the assumption that, to avoid adverse price movements, agents only

submit small orders that are optimal locally. Therefore, we call it local general equilibrium

theory.

Before presenting the local theory, we present the standard global General Equilibrium

Theory for exchange economies.

A. Global Exchange Environments

There are I consumers, indexed by i = 1, . . . , I, and K = 1 + R commodities, where

the last R commodities are indexed by k = 1, . . . , R, and the first one is commodity 0.

We reserve this first commodity as a special one, and will designate it as the numeraire

commodity when needed.

Each i owns initial endowments ωi = (ωi1, . . . , ω
i
K) such that ωik > 0 for all i and k.

Let xi = (si, ri1 . . . , r
i
R) be the consumption of i and let X i = {xi ∈ <K | xi ≥ 0} be the

admissible consumption set for i. Let di ∈ <K be a vector of net trades. i’s consumption

equals her initial endowments plus net trades, xi = ωi + di. Finally, each i has a quasi-

concave utility function, ui(xi). We will assume that ui ∈ C2 (that is, it has continuous

second derivatives) although many of our results would hold under weaker conditions. We

also assume that {xi|ui(xi) ≥ ui(wi)} ⊂ Interior(X i).
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A.1. Global General Equilibrium

Let p be the vector of prices, p = (p1, ..., pK) for the K assets. The excess demand of i is

ei(p, ωi) = arg maxdi u
i(ωi + di) subject to p · di = 0 and wi + di ∈ X i. The aggregate excess

demand of the economy is e(p, ω) =
∑
ei(p, ωi).

Competitive market equilibrium in this exchange economy is straight-forward to describe.

A price, p∗, and a vector of trades, d∗ = (d∗1, ..., d∗I) constitute a market equilibrium if and

only if (1) given prices p∗ trades d∗i are optimal for all i = 1, ..., I and (2) markets clear, i.e.,

d∗i = ei(p∗, ωi),∀i = 1, ..., I.

and

e(p∗, ω) = 0.

B. Local Exchange Environments

A local exchange economy at time t is described by the local allocation, xit = wi + ηit,

a set of feasible local trades, F i(xit) = {ηi} ⊂ <K , and the local utility function, ∇ui(xit) ·

ηi. Feasibility requires that
∑

i η
i = 0. In this local economy there is a temporary local

equilibrium.

The dynamics are described by the movement through time from one local equilibrium to

the next. We discuss a Marshallian theory below. A Walrasian theory along with an equiv-

alence result between the two theories (under certain conditions) are presented in Sections

Appx.B.1 and Appx.B.2 respectively of the Appendix.
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B.1. A Local Marshallian Theory

In this section, we propose a dynamic process that relies on the Marshallian intuition.

Early versions of allocation mechanisms based on this intuition can be found in Ledyard

(1971) and Ledyard (1974).10

It is easiest to incorporate a Marshallian approach into a general equilibrium model if we

adopt the concept of “numeraire.” Such an approach will later render the finance model a

straight-forward special case. For the rest of this paper, we assume that commodity 0 is the

numeraire, and ui0,t =
∂ui(xit)

∂xi0.t
> 0,∀i, t. Let pt = (1, qt) and xit = (sit, r

i
t) ∈ < × <R+. Here sit is

i’s quantity of the numeraire commodity at time t.

We will let ρik,t denote the marginal rate of substitution between commodities 1 and k at

time t, k = 1, ..., R (i.e, ρik,t =
uik,t
ui0,t

=
∂ui(xit)/∂x

i
k

∂ui(xit)/∂x
i
0
), representing i’s marginal willingness to pay

for rk in units of commodity 0. Let ρit = (ρi1,t, ..., ρ
i
R,t).

Let bik,t be the amount that i expresses to the market about their willingness to pay or

accept.11 Also, let bit = (bi1,t, ..., b
i
R,t).

Marshallian assumption. Quantities move towards those who are prepared to offer

higher surplus relative to the market. Formally, over a time period τ , i’s trades will be

∆rit = rit − rit−τ = α(bit − qt), where α is the rate at which surplus is translated into trade.

Local budgets balance. Locally, each individual has to balance their budget, which

implies pt ·∆xit = 0, or qt ·∆rit + 1 ·∆sit = 0, or ∆sit = −qt ·∆rit.
10Samuelson (1947) (p. 264) describes a slightly different interpretation of Marshallian dynamics of quan-

tity adjustment: “If ‘demand price’ exceeds ‘supply price,’ the quantity supplied will increase.” Samuelson
provides a formalization of this based on the inverses of the partial equilibrium aggregate demand and supply
curves. Unfortunately, in an exchange economy there is no obvious way to generate an inverse demand
function or an inverse supply function without making some explicit assumptions about the allocations that
do not seem reasonable. If we assume there are only two goods and quasi-linear utility functions, then
di(p) = ∇xu−1(p) − wi. We can say the aggregate demand at p is D(p) =

∑
i max{0, di(p)} and the sup-

ply is S(p) = −
∑
i min{0, di(p)}. Given D(p) the “demand price” is D−1(Q). The dynamic proposed by

Samuelson is dQ/dt = α[D−1(Q)− S−1(Q)]. Left unsaid is what happens to each di.
11We will call this a bid but it could also be i’s “reserve price” where they would be willing to take a unit

of k in trade at a price lower than bik,t if they saw such a price offered in the market.
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Local approximation. Since, locally ∆uit ≈ ∇uit · ∆xit, using ∆sit = −qt · ∆rit, the

Marshallian assumption, and uik,t = ρk,tu
i
0,t, we derive

∆uit ≈ ui0,t(ρ
i
t − qt) ·∆rit = ui0,t(ρ

i
t − qt) · α(bit − qt). (1)

Competitive (no speculation) assumption. Since this is a model of competitive

behavior, we maintain the basic assumption that individuals take the price qt, as well as

the Marshallian assumption, as given. Faced with this prospect, how should an individual

choose their bid, bit? Individual i wants to make ∆uit = uit−uit−τ > 0 large, if at all possible.

Therefore i wants to choose bit so that bit − qt = ciτ(ρit − qt) where ciτ is chosen to control

the rate at which i will trade. Since this is a linear approximation of the individual’s utility

increase, she will not want ciτ to be too large.12

With these bids and this trading dynamic, trading is feasible if and only if
∑

i ∆r
i
t = 0.

This is true if and only if qt =
∑

i c
iρit∑

i c
i = ρ̄t. We can think of qt as the local Marshallian

equilibrium price It is the only price at which individuals will not want to change their bids,

given the Marshallian trade dynamic.

To summarize, we have

∆rit = α(bit − qt) (2)

bit = qt + ciτ(ρit − qt) (3)

∆sit = −qt∆rit (4)

qk,t =

∑
i c
iρik,t∑
i c
i

(5)

12See the Section Appx.C in the Appendix for one possible calculation of “too large”.
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Substitute (3) into (2) and let τ → 0. This leads to a continuous-time local Marshallian

equilibrium theory:

drik,t
dt

= αci(ρik,t − qk,t) (6)

dsit
dt

= −qt
drit
dt

(7)

qk,t =

∑
i c
iρik,t∑
i c
i

(8)

Remark 1: The above is a “reduced form” competitive theory. It assumes that traders are

taking two things as given: (i) prices qt and (ii) the trading rule ∆rit = rit − rit−τ = α(bit −

qt). If i behaves competitively, then i takes qt as given and chooses bit = qt + ciτ(ρit − qt).

Summing across i on both sides of this response equation and dividing by I yields b̄t =

qt + (τ/I)
∑
ci(ρit − qt). Therefore, in equilibrium, qt = b̄t = ρ̄t.

In a CDA system, transactions take place when someone’s bid/ask is accepted. So on

average the transaction price will be b̄. Also, traders with the most to gain, those with the

largest difference in bi− b̄, will trade faster than others. Thus trade should occur, on average,

according to the process we described above. That is, (6)-(8) can be loosely thought of as the

expected value of a stochastic process whose absorbing states are the rest points of (6)-(8).13

13Another way to see whether (2)-(5) might describe something real is to consider whether it is incentive
compatible. Would an optimizing agent be willing to follow these rules? It can be shown that (2)-(5) satisfies
two types of incentive compatibility.

Suppose i believes (2) and that qt is unknown. If i wants to protect herself against possible losses, i.e. i
wants to ensure that ∆uit = ui(xit + ∆xit) − ui(xit) ≥ 0, then i should choose bit = ρit. So, i should choose
ci = 1/τ. This type of local incentive compatibility is identical to that introduced by Dreze and de la Valllee
Poussin (1971). It is a maximin type of defensive bidding which exhibits extreme risk aversion.

One can also imagine a less defensive approach. Suppose all i believe ∆rit = α(bit − qt) and that qt =
(1/I)

∑
bit, the Marshallian equilibrium price. Further suppose they choose bit to be a local Nash Equilibrium.

That is, for every i,

bit ∈ argmax ∆uit = (ρit − qt)α(bit − qt) (9)

= (ρit −
∑
j b
j
t

I
)(bit −

∑
j b
j
t

I
) (10)

Letting b̄t =
∑
bjt
I , the first order conditions for this are: −1

I (bit−b̄t)+ I−1
I (ρit−b̄t) = 0 or bit = b̄t+(I−1)(ρit−b̄t).

Summing over i gives b̄t = ρ̄t =
∑
ρit
I . So the local Nash equilibrium has bit = ρ̄t + (I − 1)(ρit − ρ̄t). Since
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Theorem 1: (Convergence to Pareto Optimality)

Let xt = (st, rt). For the dynamics in (6)-(8), (xt, pt) → (x∗, p∗) where x∗ is Pareto-

optimal and e(p∗, x∗) = 0.

The proof of the theorem is relegated to Section Appx.C of the Appendix.

C. Introducing a Lag

The Marshallian Local Theory of the previous section raises a practical issue. Price

adjustment in CDAs often occurs at a speed far beyond the speed of adjustment of individual

orders. By the time an agent has canceled old orders and submitted new orders, prices may

have changed a number of times. So, let us investigate what happens if bidders submit orders

in reference to lagged and not to current prices.

C.1. The Model

We maintain all assumptions of Section IV.B.1, except for allowing for slow bid adjust-

ment, i.e,

bit = qt−τ + τci(ρit − qt−τ ).

Thus, while agents take into account their marginal valuations at current holdings, they

respond optimally to lagged prices, and not to the current prices. As before, ∆rit = rit−rit−τ =

α(bit − qt), and as a result qt = (1/I)
∑
bit will clear the markets.

qt = b̄t = ρ̄t this means bit = qt + (I− 1)(ρit− qt). Compare this to (3) to see that ci = I−1
τ . Thus, local Nash

equilibria look exactly like local Marshallian equilibria.

19



This implies,

qt = qt−τ + τ

∑
i c
i

I
(ρ̄t − qt−τ ) (11)

rit = rit−τ + ατ [ci(ρit − qt−τ )−
∑

j c
j

I
(ρjt − qt−τ )]. (12)

Letting τ → 0,

drit
dt

= α[ci(ρit − qt)− c̄(ρ̄t − qt)] (13)

dqt
dt

= −c̄(qt − ρ̄t) (14)

Compare this to (6)-(8). First, in (8) prices q adjust instantaneously to the weighted average

willingness to pay ρ̄, while in (14) prices q converge exponentially to ρ̄. Second, in (6)

allocations adjust, according to the Marshallian intuition, proportionally to the individual

difference in the willingness to pay and the market price. In (13), the Marshallian adjustment

is modulated by the difference between the average willingness to pay and the market price.

If prices adjusted immediately this last term would vanish and we would have exactly (6).14

C.2. Asymptotics

If we try to proceed as in Theorem 1, we immediately run into a problem. With lags, from

equation (1) it follows that duit/dt = ui0,t(ρ
i
t−qt) ·(

drit
dt

) = ui0,t(ρ
i
t−qt) ·α[ci(ρi−q)− c̄(ρ̄−q)] =

ui0,t[(ρ
i − q) · αci(ρi − q)]− ui0,t[(ρit − qt) · αc̄(ρ̄t − qt)]. While the first term is positive as long

as ρit 6= qt, the second term is not necessarily so. Thus, it is possible that along the dynamic

path some individual utilities might decline because of the lag in the response to prices.

Thus, we cannot expect convergence to occur in as orderly a manner as occurred in Theorem

1.

14If one thinks of the local Walrasian model with F i = {ηi| ||ηi|| ≤ R} then the local Walrasian demand is
ci(ρit− qt). So one can interpret (14) as indicating that prices adjust proportionally to local excess demands.
That is, (13) and (14) are the local equivalent of the global non-tatonnement model in Appx.A.3.
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There is, nevertheless, a case of interest in which convergence to Pareto-optimal allo-

cations can be proven. This is the case of quasi-linear preferences where ui0,t = 1 for all

i, t. This is true, for example, for the CAPM model of finance. There are also a lot of

(experimental) data for this case.

Theorem 2: (Convergence to Pareto Optimality)

Let xt = (st, rt). If (i) there are no income effects, i.e., ui0(xit) = 1 for all i and all xit ∈ X,

and (ii) xit > 0 for all t, then for the dynamics in (13) and (14), (xt, pt)→ (x∗, p∗) where x∗

is Pareto-optimal and e(p∗, x∗) = 0.

The proof of this theorem is relegated to Section Appx.C of the Appendix.15

C.3. Cross-autocorrelations

In our model, prices change in reaction to the average willingness to pay or receive

(see equation (14)). Respectively, each trader’s willingness to pay or receive changes with

how his/her holdings evolve as a result of the trading opportunities (see (13)). With the

system (13)-(14) guiding the market motion, a rich pattern of price dynamics is possible. In

particular, it generates interesting cross-autocorrelations that, like the cross-security effects

of excess demands on price changes, depend on payoff covariances. Cross-autocorrelation

intensities also depend crucially on adjustment parameters, such as α, τ and cis.

Cross-autocorrelations have been recorded in historical field data and are thought to

be the key factor behind the momentum effect, i.e., the finding that prior-year winners

15Condition (ii) is included above for technical reasons. If dui/dt ≥ 0 along the path for all i, then (ii)
wouldn’t be necessary. But when dui/dt < 0 is possible for some i, we need to worry about xit hitting the
boundary of the feasible consumption set. There are standard ways to modify (14) to deal with this. We do
not pursue them here.

Condition (i) is included because we do not have a proof of convergence for utilities with income effects.
Indeed, we believe it would be relatively easy to construct examples where such convergence will not occur.
One could, of course, revise the model and impose a No Speculation condition on trades that would ensure
dui/dt ≥ 0. We do not do that here largely because, as we will see below, the model as it now stands is
consistent with the data.
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outperform prior-year losers, even after adjusting for standard risk premia (see Lewellen

(2002)). In our equilibration model, cross-autocorrelations emerge because of the complex

local adjustment dynamics: prices of some securities may adjust faster than others, because

trade in those securities leads to larger utility increases. The problem is, however, that few

general principles govern the price-allocation evolution embodied in the differential equations

in (13)-(14). In particular, cross-autocorrelation properties depend crucially on adjustment

parameters such as ci. Conversely, cross-autocorrelation properties could be used to identify

those parameters in ways that evolution of individual prices could not.

The presence of cross-autocorrelations raises an intriguing question: since such cross-

autocorrelations imply opportunities to profit from, e.g., pairs trading as in Gatev, Goetz-

mann, and Rouwenhorst (2006), why would they not disappear? If exactly the same situation

is replicated period after period, we expect prices to gradually start out closer to equilib-

rium, and hence, cross-autocorrelations to be reduced. However, if every period parameters

(endowments, risk penalties, payoff patterns) change in unknown ways, there is insufficient

time for market participants to fully learn the cross-autocorrelations; by the time these auto-

correlations are estimated with sufficient precision, they will have moved away. As a result,

hindsight will reveal significant cross-autocorrelations, but they cannot be exploited out-of-

sample. Bossaerts and Hillion (1999) indeed show robust evidence of in-sample predictability

in historical return data that cannot be exploited out-of-sample. In appears that the only

way to robustly capture cross-autocorrelations is through momentum portfolios. However,

the presence of cross-autocorrelations is not a foregone conclusion, and hence, momentum

effects may come and go. We leave it to future analysis to determine more precisely the

relationship between models of price discovery and momentum.
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V. Experimental Evidence

Here, we return to experiments. The payoff to participants in those experiments is

according to quasi-linear, quadratic functions, like those underlying the Capital Asset Pricing

Model (CAPM) in finance.

A. Experimental Setup

Each experiment consists of a number of independent replications of the same situation,

referred to as periods. At the start of a period, participants are given an initial position in

three securities, referred to as A, B, and Notes, and some cash. The markets for the three

securities are simultaneously open for a pre-set amount of time. The trading interface is a

fully electronic web-based version of a CDA, whereby non-marketable orders remain in the

open book of the market. After markets close, at the end of a period, participants receive

payoffs according to the given payoff function, minus a fixed, pre-determined loan payment.

After their liquidating payoff all three securities expire worthless. The total payoff from an

experimental session equals the sum of the payoffs across the periods.

Participants do not have to be present in a centralized laboratory equipped with computer

terminals, but can instead access the trading platform over the internet. Communication in

experiments like these takes place by email, phone and through the announcement and news

page online. Each session in this study had between 30 and 42 participants. We should note

that those numbers are 30-50% larger than a typical market experiment. The scale is chosen

to ensure a trading environment that best approximates the conditions of the theory: large

enough markets so that there is only a small bid-ask spreads but still, small enough markets

so that the best ask and best bid be valid only for small quantities.
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End-of-period payoff functions are specified as follows. Participant i, when holding hi

units of the Notes, Ci of cash and the vector ri = (riA, r
i
B) of securities A and B receives a

payoff

Pay(i) = [ri · µ]− ai

2
[ri · Ωri] + Ci + 100hi − Li, (15)

where Li denotes the loan payment.

In the experiments,

µ =

 230

200

 ,
and

Ω =

 10000 (+/−)3000

(+/−)3000 1400

 .
The off-diagonal elements of Ω are negative in periods 1 through 4 in the first experiment

(28 Nov 01) and positive in periods 5 through 8. The design is reversed in the other (three)

experiments: the off-diagonal elements are positive in periods 1 through 4 and negative in

periods 5 through 8.

When interpreting µ as the vector of expected payoffs on securities A and B, Ω as the

(positive definite, symmetric) matrix of payoff covariances, and ai (> 0) as the risk penalty,

the above payoff function effectively induces the mean-variance preferences at the core of the

Capital Asset Pricing Model (CAPM). The change in off-diagonal elements of Ω corresponds

to a change in the covariance of the (random) payoffs of A and B.

The participants in each experimental session are grouped into three types and each type

is assigned one of three values for the parameter ai, chosen in such a way as to generate

similar pricing as in the CAPM experiments reported in Asparouhova, Bossaerts and Plott

(2003) that use “native” utilities and risk aversion. See Table I for details.
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Each participant type also receives a different initial allocation of A and B. Notes are

in zero net supply but short sales are allowed. Participants are not informed of each others’

payment schedules or initial holdings.16

All accounting is done in an experimental currency called “francs,” converted to dollars

at the end of a session at a pre-announced exchange rate. Each experimental session lasted

approximately three hours and the average payoff was $45 (with range between $5 and $150).

B. The CAPM Equilibrium

Let xi = (si, ri), where ri = (riA, r
i
B) are the quantities of A and B that agent i chooses,

and si is quantity of the numeraire good (cash plus payoffs on positions in Notes, minus the

Loan payment). Then:

u(xi, ai) = si + µ · ri − (ai/2)(ri) · (Ωri).

With the above preferences, it is straight-forward to derive the expressions:

ρi =µ− aiΩri, (16)

ei(q, wi) =(1/ai)Ω−1(µ− q)− wi, (17)

where the excess demand vector ei now includes only the risky securities (not the numeraire

asset).

The global Walrasian equilibrium price and allocations are

16This way, subjects with knowledge of general equilibrium theory could not possibly compute equilibrium
prices. Specifically, subjects could not form reasonably credible expectations about where prices would tend
to.
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q∗ =µ− âΩw̄ (18)

ri∗ =(1/ai)âw̄ (19)

where â = [
∑

(1/ai)]−1 denotes the harmonic mean of the individual risk aversion coefficients,

and w̄ denotes the per-capita average endowment, w̄ = (1/I)
∑
wi. Note that because of

the quasi-linearity, the equilibrium holdings r are independent of individual endowments wi.

In the CAPM interpretation of this economy, w̄ is referred to as the market portfolio (of

risky securities). The pricing equation (18) captures the essence of the CAPM: it reveals

that the market portfolio will be mean-variance optimal. Indeed, Roll (1977) showed that a

portfolio z satisfies the following relationship for some (positive) scalar β,

q = µ− βΩz, (20)

if and only if z is mean-variance optimal. Notice that this is exactly the form of the equi-

librium pricing formula in (18), so w̄ is mean-variance optimal. On the other hand, the

choice equation (19) exhibits portfolio separation: individual allocations are proportional to

a common portfolio, namely, the market portfolio w̄.

C. Equilibration Predictions

Applying the version of the Marshallian Local Theory where bid adjustment is as fast

as the price adjustment (Section IV.B.1) to the CAPM economy, we get (relegating the

derivation to the Appendix):

dqt
dt

= (
α∑
ci

)
∑

(ciai)2Ω2ei(qt, r
i
t). (21)
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That is, price changes are related to weighted average Walrasian excess demands through

the square of the matrix Ω. As such, we expect price changes in one security to be related

not only to the security’s own excess demands, but also to the excess demands of other

securities. The relationship is determined, among others, by the elements of Ω2.

Using (6) and, from (16), ρit − qt = µ− qt − aiΩrit, we get that local allocations follow

drit
dt

= αci[µ− qt − aiΩrit]. (22)

Again, adjustment is driven by the matrix Ω.

When bid adjustment is slower than price adjustment (Section IV.C), Equations (13)

and (14) take particularly interesting forms. Price changes are related to (weighted) average

Walrasian excess demands through the matrix Ω (rather than the square):

dqt
dt

= Ω
∑

(ciai)ei(qt, r
i
t). (23)

Allocation dynamics take the following form:

drit
dt

= −αΩ[ciairit −
1

I

∑
cjajrjt ] + α(ci − c̄)(µ− qt). (24)

If ci = c̄, ∀i, that is all i trade with the same aggressiveness, the second term drops out:

drit
dt

= −αc̄Ω[airit −
1

I

∑
ajrjt ] = −αc̄

(
ai − 1

I

∑
aj
)

Ωw̄. (25)

That is, changes in holdings are a linear transformation of the market portfolio (per-capita

endowment). Except in the unlikely event that the per capita allocation is an eigenvector of

Ω, agents must trade.

In the CAPM setting, where Ω is the matrix of payoff covariances, imagine that Ω is

diagonal. The diagonal elements of Ω are the payoff variances. In that case, volume (the
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sum of the absolute value of the elements in
drit
dt

) will be the highest for the high-variance

securities. That is, most adjustments take place in the high-variance securities. The sign of

the changes in an agent’s holdings of securities depends on value of the parameter ai relative

to the average ā = (1/I)
∑
aj. Since these coefficients measure risk aversion in a CAPM

setting, this means that the more risk averse agents sell risky securities (the entries of
drit
dt

are

negative); less risk averse agents buy. Effectively, the more risk averse agents unload risky

securities, paying more attention to the most risky securities, because that way their local

gain in utility is maximized. Likewise, less risk averse agents do what is locally optimal:

increase risk exposure by buying the most risky securities first.

When Ω is non-diagonal, the off-diagonal elements equal the payoff covariances, and

the sign of those covariances interferes with the above dynamics. Intuitively, when the off-

diagonal elements are negative, i.e., when the securities’ liquidating payoff covariances are

negative, securities are natural hedges for one another, and the market portfolio provides

diversification. Increasing one’s risk exposure by buying risky securities (or decreasing one’s

risk exposure by selling risky securities) leads to a less diversified portfolio, i.e., to utility

losses. Maximum local gains in utility are obtained by trading combinations of securities that

are closer to the per-capita average endowment, i.e., the market portfolio. As a consequence,

agents’ portfolios of risky securities remains closer to the market portfolio than in the scenario

when payoff covariances are zero or positive.

In an experimental setting (unlike in the theory), the equilibration process may not go

all the way to its end. This may happen when agents do not perceive enough gains to cover

the effort of trading. If this happens, agents will not have traded back to holdings that are

proportional to the per-capita average endowment. In CAPM terms, portfolio separation

would fail (and CAPM equilibrium pricing would not hold).

The role of Ω in this adjustment process is crucial. If the off-diagonal elements of Ω

are positive (payoff covariances are positive), and the equilibration process halts before fully
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reaching equilibrium, then violations of portfolio separation can be expected to be larger

than if these off-diagonal elements are negative (payoff covariances are negative).

D. Experimental Findings

Transaction Prices

Figure 1 displays the evolution of prices of securities A (dashed line) and B (dash-dotted

line).17 Each observation corresponds to a trade in one of the three securities. The prices of

the non-trading securities is set equal to their previous transaction prices. Time (in seconds)

is on the horizontal axis; Price (in francs) is on the vertical axis. Vertical lines separate

periods. Horizontal lines indicate equilibrium prices of A (solid line) and B (dotted line).

Note that their levels change after 4 periods, reflecting the change in the off-diagonal element

of Ω.

It is evident from Figure 1 that transaction prices are almost invariably below equilibrium

prices. Also, relative to equilibrium levels, prices generally start out lower in periods when

the off-diagonal terms of Ω are positive.

Price Dynamics

Table II displays the results from projections of within-period changes in transaction prices

of A and B onto the weighted sum of individual Walrasian excess demands. Weights are

given by individuals’ ais.18 The time series data for each experiment is split into two parts,

where one sub-sample covers the periods with positive off-diagonal elements for Ω, and the

other covers the periods with negative off-diagonal elements. All tests are one-sided19 and

17The prices of the Notes are not shown; these are invariably close to 100 francs, their no-arbitrage value.
18We also ran projections with unweighted average Walrasian excess demands, and the results are quali-

tatively the same.
19They compare the null hypothesis that the coefficient is zero against the alternative that it is positive

(in the case of the projection coefficient of a security’s own aggregate excess demand) or has the same sign
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the estimates of the slope coefficients of aggregate excess demands are bold-faced whenever

they are significant at the 1% level.

The regression’s R2s are small, but the F -tests reveal that significance is high. The first-

order autocorrelation coefficients of the error term suggests little mis-specification (some are

significantly negative, but one would expect the data to generate a number of significant

autocorrelations even if the true autocorrelation is zero).

We document the following. First, each security’s price changes significantly and pos-

itively correlate with its own weighted aggregate excess demand. Second, the signs of the

cross-effects (partial correlation between a security’s price change and the weighted aggregate

excess demand in the other security) are almost always the same as that of the off-diagonal

elements in Ω (if they are not, the projection coefficient is insignificant). The estimation

results are highly significant.20

Table II thus suggests that the matrix of coefficients in projections of transaction price

changes onto aggregate (Walrasian) excess demands has the same structure as Ω. A closer

inspection of the table suggests that this projection coefficient matrix not only reflects the

signs of the corresponding elements of Ω, but also their relative magnitude. For instance,

the slope coefficient of own excess demand in the projection of the price change of security

A is generally the largest; the corresponding element in Ω happens to be largest as well.

as the off-diagonal elements of Ω (in the case of the projection coefficient of the other security’s aggregate
excess demand).

20These results replicate the findings in Asparouhova, Bossaerts and Plott (2003) and Asparouhova and
Bossaerts (2009). There, quadratic preferences were indirectly induced, through risk. In Asparouhova,
Bossaerts and Plott (2003), there were two risky securites; in Asparouhova and Bossaerts (2009), there were
three. The latter setting is particularly illuminating: Asparouhova and Bossaerts (2009) reports that the
partial correlation between changes in prices of an asset and the Walrasian excess demand of another asset
reflects the magnitude and sign of the corresponding element of the payoff covariance matrix.
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Allocations

According to Walrasian equilibrium theory, individual holdings of A and B should be pro-

portional to the per-capita allocations of these two securities. To measure the extent of vio-

lations, we compute the value of holdings of A as a proportion of the total value of holdings

of A and B and compare the same proportion if a subject were to be holding the per-capita

allocations. The absolute deviation should be zero. Table III displays the mean absolute

deviations (across subjects) based on final holdings in all periods of all experiments. It is

obvious that the theoretical prediction is not upheld. The results are not surprising—similar

findings have been documented in Bossaerts, Plott and Zame (2007).

Table III demonstrates, however, that the mean absolute deviations depend on the sign

of the covariance between the payoffs on A and B. This effect emerges despite the fact

that subjects start out with the same initial allocations in every period of the experimental

session (see Table I). Only the sign of the off-diagonal elements of Ω appear to have an effect.

Straightforward computations of standard errors (not reported) lead the conclusion that the

mean absolute deviations are always significantly bigger in periods where the off-diagonal

elements of Ω are positive than when these elements are negative.

Those mean absolute deviations measure the degrees of violation of portfolio separa-

tion.The relationship with the sign of the off-diagonal elements of Ω suggests that portfolio

separation violations are worse when payoff covariances are positive.

Discussion

Let us first discuss price dynamics. The data suggest:

dqt
dt

= κΩ
∑

aiei(qt, r
i
t), (26)

for some constant κ > 0. That is, prices changes are related to the average Walrasian excess

demands through the matrix Ω. This is consistent with the Local Marshallian Theory with
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slow bid adjustments, as in (23), but not with the Local Marshallian Theory with fast bid

adjustment, as in (21).

Second, Local Marshallian Theory with slow bid adjustments explains how the final allo-

cations depended on matrix Ω. If the off-diagonal elements are positive, and the equilibration

process halts before reaching equilibrium (which it did, as seen in Figure 1), final holdings

are farther from equilibrium predictions. In the CAPM setup this means that when payoff

covariances are positive, violations of portfolio separation in eventual allocations are more

extreme. This finding has important implications for security design and social welfare as

our results indicate that keeping the market portfolio fixed, the allocational efficiency of a

market depends on the equilibration processes at work.

VI. Predictions of Relevance To Studies of Asset

Pricing in Archival Data

As discussed before, financial economists are interested in pricing models imposed by

equilibrium restrictions. One class of such models, the portfolio-based models, explain the

pricing of securities relative to some benchmark. In the CAPM, for instance, the prediction

is that all assets are priced such that the market portfolio is mean-variance optimal, i.e.,

provides the maximum expected return for its risk (return variance).

An interesting question is: can we generate similar models off equilibrium. Specifically,

can one identify a portfolio that continuously determines the prices of all securities even

while markets are off equilibrium?

We argue that one can, by studying where prices converge to if the trading process

temporarily halts (i.e., if α = 0 for a short period of time). In the CAPM setting, prices
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would continue to adjust according to (14). The stationary point of this system of differential

equations is:

q∗ = µ− Ω
1∑
ci

∑
ciairi. (27)

Notice that this equation is of the same form as the one that defines mean-variance optimal

portfolios, namely, (20). The two equations coincide for β = 1∑
ci

and z =
∑
ciairi. When all

ci are identical, this portfolio is the average holdings portfolio, where each agent’s holdings

are weighted by the coefficient ai. This means that the holdings of more risk averse agents

(agents with higher ai) are weighted more heavily. We refer to the portfolio as the risk-

aversion weighted endowment portfolio, or RAWE for short. The RAWE portfolio and the

per-capita endowment are closely related. If allocations are independent of the coefficients ai,

then the two coincide. Such is the case, for instance, if all individual holdings are proportional

to the per-capita endowment (i.e., to the market portfolio).

We can go back to our experiments and study how far the RAWE portfolio is from mean-

variance optimality after each transaction. We measure the distance from mean-variance

optimality as the difference between the Sharpe ratio (at each transaction) of the RAWE

portfolio and the maximum possible Sharpe ratio. The Sharpe ratio is defined to be ratio

between the expected return and the return variance. Expected returns, variances and

covariances are computed from the entries in µ (expected payoffs), Ω (payoff variances and

covariances) and transaction prices.

In an absolute sense, it is hard to know when the distance from mean-variance optimality

is “large.” To obtain a relative sense of distance, we normalize the distance by the maximum

(observed) distance in an experiment. Hence, our distance measure is between zero and one;

it equals zero when a portfolio is mean-variance optimal; it equals one when the distance is

maximal in the experiment at hand. To get a measure of how far the markets are at any

point from the Walrasian (CAPM) equilibrium, we compute the difference of the value of
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the market portfolio evaluated at transaction prices and its value at the CAPM equilibrium.

This difference, too, is normalized by the maximal observation in an experiment.21

The normalization and the comparison with the distance from equilibrium pricing are

insightful. Figure 2 displays the evolution of the distance of the RAWE portfolio from

mean-variance optimality and that of the distance from the CAPM pricing. The contrast

between the two distance measures is often pronounced. The RAWE portfolio almost in-

variably moves quickly to the mean-variance efficient frontier, confirming the Marshallian

equilibration model prediction. At the same time, again as predicted, prices may be far from

equilibrium. The latter is more pronounced in periods when the covariance is positive.

VII. Concluding Comments

Previous research has shown that standard global tatonnement and non-tatonnement are

not consistent with within-period price dynamics in continuous double auctions (CDAs).

Since CDAs are competitive only locally (i.e., for small quantities), we propose a Local

Marshallian Equilibrium theory. It is equivalent to a Local Walrasian Equilibrium theory, but

our experiments show that it cannot explain cross-security price dynamics. Instead, Local

Marshallian Equilibrium with bids based on lagged market prices (but current holdings)

is consistent with pricing data, and it explains robust patterns in individual final holdings

across treatments.

In our experiments, we induce quasi-linear, quadratic preferences in a way that makes the

economy isomorphic to a CAPM one (both theoretically and in reference to previous CAPM

experiments). In a CAPM setting, the Local Marshallian Equilibrium identifies a portfolio

that remains mean-variance optimal throughout the equilibration path. This portfolio can be

used as benchmark for pricing, just like the market portfolio is used as the pricing benchmark

21Note that CAPM pricing is a sufficient but not a necessary condition for the difference measure to be
zero.
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in the CAPM equilibrium. Consistent with other experiments where equilibrium dynamics

organize the data better than equilibrium restrictions do (see Crockett (2013)), here, too,

we present the opportunity to dispense with pricing restrictions based on global equilibrium

concepts and replace them with local equilibrium ones.

While the experimental findings provide solid support to our theory, they raise many new

issues that need to be addressed in future research. First, can Local Marshallian Equilibrium

with bids based on lagged market prices predict pricing and allocation dynamics in situations

with income effects (unlike in our experiments), such as, for instance, in Scarf’s example

(Scarf (1960))? Second, would Local Marshallian Equilibrium with bids based on lagged

market prices also apply to the dynamics of book building in Call Markets? If not, this

would mean that institutions do matter; if it does, it would imply that some kind of revelation

principle applies.

The theory also needs further exploring. In particular, we need a better understanding

of the trade intensity parameters, ci. Right now, they are treated as constants, effectively

making our agents myopic, unable to form expectations about the future price changes.

In many contexts (including, we think, the experiments presented here), lack of structural

information about the economy (supplies of securities; other agents’ preferences, etc.) may

make it impossible for agents to form sensible expectations, so myopia can be defended. Still,

as agents acquire more information about the economy, one can expect them to trade more

aggressively, and hence, adjust ci.

Information from past periods, for instance, could allow agents to better calibrate price

expectations, thus generating the across-period learning patterns that are evident in many

experimental markets. Specifically, past price information could be readily incorporated into

agents’ marginal willingness to pay vector ρi, using arguments from Easley and Ledyard

(1992).

Finally, because the lag with which agents update their bids may vary from agent to

agent, price and quantity dynamics will depend on who is active and who is not. Future
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experiments should shed light on the decision to become active and how those decisions

would influence the said dynamics.

Appendix

Appendix A. Standard General Equilibrium Theory

In this section we very briefly review the standard general equilibrium theory for exchange

environments. We do this primarily to have, in one place, notation and concepts we use

throughout the rest of the paper.

Appendix A.1. Exchange environments

There are I consumers, indexed by i = 1, . . . , I, and K = 1 + R commodities, where

the last R commodities are indexed by k = 1, . . . , R and the first commodity is indexed

commodity 0. We reserve the first commodity as a special one, and will designate it as the

numeraire commodity when needed.

Let xi = (si, ri1 . . . , r
i
R) be the consumption of i and let X i = {xi ∈ <K | xi ≥ 0} be the

admissible consumption set for i. Each i owns initial endowments ωi = (ωi1, . . . , ω
i
K) such

that ωik > 0 for all i and k = 1, 2, ...K, where K = R + 1. Let di ∈ <K be a vector of net

trades. i’s consumption equals her initial endowments plus net trades, xi = ωi + di. Finally,

each i has a quasi-concave utility function, ui(xi). We will assume that ui ∈ C2 (that is, it

has continuous second derivatives) although many of our results would hold under weaker

conditions. We also assume that {xi|ui(xi) ≥ ui(wi)} ⊂ Interior(X i).
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Appendix A.2. Equilibrium

Let pk be the price of commodity k. Given a vector of prices, p = (p1, ..., pK), the excess

demand of i is ei(p, ωi) = arg maxdi u
i(ωi + di) subject to p · di = 0 and wi + di ∈ X i. The

aggregate excess demand, of the economy, is e(p, ω) =
∑

i e
i(p, ωi).

Competitive market equilibrium in an exchange economy is straight-forward to describe.

A price, p∗, and a vector of trades, d∗ = (d∗1, ..., d∗I) is a market equilibrium if and only if

(1) given prices p∗ trades d∗i are optimal for all i = 1, ..., I and (2) markets clear, i.e.,

d∗i = ei(p∗, ωi),∀i = 1, ..., I.

and

e(p∗, ω) = 0.

Appendix A.3. Walrasian and Marshallian Dynamics

A compelling reason to be interested in equilibrium is the “argument, familiar from

Marshall, ... that there are forces at work in any actual economy that tend to drive an

economy toward an equilibrium if it is not in equilibrium already.”22 While the argument is

part of conventional wisdom, little is known about the true nature of price discovery, i.e.,

the dynamics d
dt
pt and d

dt
dit that lead to equilibrium (t here denotes time).

There are two alternative models that are at the foundation of most early analyses of

market dynamics, namely the Walrasian and the Marshallian model.

Walrasian Dynamics. The former, traceable to Walras, is the tatonnement dynamics.

It assumes a price vector pt for the K commodities, and treats the aggregate quantities of

demand and supply as a function of that price. Prices of goods in excess demand go up,

22Arrow and Hahn (1971), p. 263.
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prices of goods in excess supply go down. Trade only occurs at the terminal point of this

process, where aggregate excess demand is zero. Formally,23

dpt
dt

= e(pt, ω)

dit =

 0 if pt 6= p∗

ei(pt, ω
i) if pt = p∗

Marshallian Dynamics. Informally, the Marshallian model starts with a fixed quantity

vector (∈ <K), and treats the demand (or willingness to pay) and supply (willingness to

accept) prices as a function of that quantity. If the supply price exceeds the demand price,

then it is assumed that the quantity adjust downwards. Formally,

ddit
dt

= gi(pt, ω
i + dit)

dpt
dt

= e(pt, ω + dt)

For now, the functions gi remain unspecified24 except for an important feasibility con-

straint on this system, namely that the aggregate adjustment in net trades must always

equal zero: ∑
i

ddit
dt

= 0.

A useful observation is that in the Walrasian tatonnement trades follow price adjustments

(trivially, as trade only happens at equilibrium prices). In the non-tatonnement system prices

pt, follow trades, dt.

23There are a variety of generalizations of this structure that allow for variations in the speed of adjustment
such as dpk/dt = λkek(p, ω) with λk > 0. We will not need to refer to these in this paper.

24For specific examples of this type of dynamic, see Arrow and Hahn (1971), Hahn and Negishi (1962),
Uzawa (1962), Friedman (1979), and Friedman (1986).
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A lot is known about the Walrasian dynamical system. For example, if the excess demand

functions satisfy a “gross substitutes condition,” then pt → p∗ as t→∞. But there are very

simple exchange environments, as the examples from Gale (1963) and Scarf (1960), in which

such convergence does not occur.

More importantly, for what follows, the tatonnement is only a theory about prices. No

adjustment from the initial endowments takes place until after the prices reach equilibrium.25

As for the Marshallian system, it is known that if gi’s are continuous, voluntary exchange

coupled with no speculation (∇uit ·
ddit
dt
> 0) imply that as t → ∞, dt → d∗ where w + d∗ ∈

{Pareto-optimal allocations} and pt → p∗ where (p∗, 0) is a market equilibrium for the

exchange economy with the endowment wi + d∗i for each i. It need not be true that (p∗, d∗)

is an equilibrium of the exchange economy with the endowment w.

Appendix B. Local General Equilibrium Theory

Appendix B.1. A Local Walrasian Theory

Champsaur and Cornet (1990) use the concept of a local Walrasian equilibrium26 to

create a theory of dynamic price adjustment.

Informally, given a price, each consumer submits a trade vector that makes her utility

increase the fastest (locally), i.e., a trade vector that is proportional to her marginal utility.

In a local equilibrium, the price must be such that the markets clear, i.e., the submitted

trade vectors must sum up to zero.

25This might describe, for example, the “book building” process in a call market if orders can be withdrawn.
It should not be expected to describe the price formation process in a continuous trading market in which
transactions occur as prices are changing.

26They call this a Marginal Walrasian equilibrium.
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Let ηi(p) ∈ argmax ∇ui(xi) ·ηi subject to p ·η = 0 and ηi ∈ F i. The function ηi(p) is i’s

local excess demand function. A local Walrasian equilibrium at xt is (η∗(xt), p
∗(xt)) where∑

ηi(p∗(xt)) = 0, and ηi∗(xt) = ηi(p∗).

The dynamics of the local Walrasian model are given by

pt = p∗(xt) (1)

dxit
dt

= η(p∗(xt)) (2)

Champsaur and Cornet (1990) assume that ∇ui(xi)� 0, ∀xi and that F i = {η|η ≥ −δ},

where δ ∈ (<K++)I is a fixed parameter. That is, the local economy is linear in an Edgeworth

box. Their main result is the following.

Theorem 3: (i) for all t, xt is attainable, (ii) duit/dt ≥ 0, (iii) pt · dx
i
t

dt
= 0, and (iv) as

t→∞, with strict quasi-concavity of the utility functions, xt converges to a Pareto-optimal

allocation x∗ and pt converges to a p∗ such that e(p∗, x∗) = 0.

It is, of course, not necessarily true that (x∗, p∗) is a (global) Walrasian equilibrium for

w; that is, it is not necessarily true that e(p∗, w) = 0.27

Appendix B.2. Equivalence of Local Marshall and Local Walras

Under certain conditions, the local Walrasian and Marshallian theories imply exactly the

same dynamics. The key is the set F i, the local feasible consumption set in the Walrasian

equilibrium model.

27A discrete version of the Local Walrasian theory has been provided by Bonnisseau and Nguenamadji
(2009). The primary difference from the above is that they use the global utility, ui(xit + ηi), in place of the
local utility, ∇ui(xi) · ηi. With that, and the discreteness of time, they get convergence to Pareto-optimal
allocations in a finite number of steps.

40



Case 1: Local Marshall is Local Walras Suppose we have a local Marshallian equi-

librium at t, (dr
∗
t

dt
, q∗t ). Let F i

t = {η = (ds
i
t

dt
, dr

i
t

dt
) | ci||ρi(x∗t ) − q∗t || ≥ ||

drit
dt
||}. This means in

particular that there are no local income effects. Then the local Walrasian equilibrium is

with allocations drit
dt

= ci(ρi(x∗t − q∗t ) and a price vector q∗t .
28

Case 2: Local Walras is Local Marshall Suppose F = {dr
i
t

dt
| ||dr

i
t

dt
|| ≤ δ}, i.e. no local

income effects, and we have a local Walrasian equilibrium at t, (dr
∗
t

dt
, q∗t ). Then dr∗it

dt
= λ(ρit−q∗t )

where λ||ρ∗it − q∗t || = δ. Let ci = δ
α||ρ∗it −q∗t ||

. Then the local Marshalian equilibrium will be the

same as the local Walrasian.29

Remark 2: Trying to tie the local versions of Marshall and Walras together exposes the

delicate nature of the “local” arguments we are trying to make. The step sizes, F i for

Walras and ci for Marshall appear ad hoc. It is our belief that their precise sizes are not

that important, in that the dynamics will be similar in all cases. What may be different is

the precise path and whether that path favors one agent over another.

Appendix C. Proofs

Appendix C.1. Optimal Bidding Strategy

Over the time interval [0, T ], there are T/τ periods of length τ . Trading at the rate ∆r

implies ∆u ' (ρ − q) · (T/τ)(∆r) − (1/2)(T/τ)2[∆r · (H∆r)]. If u is quasi-linear (like in

CAPM preferences) then H = −∇xxu, the Hessian of u. If u is not quasi-linear then H is

more complicated but it is positive definite (p.d.).

If ∆r = λ(ρ − q) then ∆u ≥ 0 iff ||ρ − q||2 − (1/2)(λT/τ)[(ρ − q) ·H(ρ − q)] ≥ 0. This

is true iff λ ≤ τc∗ where c∗ = (2/T )||ρ − q||2/[(ρ − q) · H(ρ − q)]. Note that c∗ is bounded

28Note that this requires F (xt) to depend on q∗t and x∗t which is consistent with the logic of the Appendix.
But it means that “step size” and “equilibrium prices” are being simultaneously determined.

29Note that this does require ci to depend on q∗t and x∗t .
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away from 0 as ||ρ − q|| → 0, since H is p.d. (In one dimension, the bound is 1/H.) One

thing this implies is: the more risk averse one is (in the CAPM interpretation of quasi-linear

preferences) or the longer T is relative to τ , the lower is c∗.

Therefore a local trader will want ∆r = a(b− q) = τc∗(ρ− q) or b = q + τc(ρ− q).

Appendix C.2. Theorem 1 Proof

Theorem 1: (Convergence to Pareto Optimality) Let xt = (st, rt). For the dynamics in

(6)-(8), (xt, pt)→ (x∗, p∗) where x∗ is Pareto-optimal and e(p∗, x∗) = 0.

Proof: For each i,
duit
dt

= (∇uit)ηit = ui0,t(ρ
i
t − qt) · dr

i
t

dt
= ui0,t(ρ

i
t − qt) · ci(ρit − qt) > 0

unless ρit = qt. Therefore d(
∑
uit)/dt > 0 unless ρit = qt for all i. This, and the continuity of

the differential equation system allows us to use
∑
ui as a Lyapunov function and apply the

standard asymptotic convergence theorems.

We can also see that the dynamics of prices is given by dqt
dt

= dρ̄t
dt

= 1∑
ci

∑
ci
dρit
dt

where

dρit
dt

=
∑

i(
∂ρit
∂rik,t

)(
drik,t
dt

) Let H i
t denote the matrix with columns

∂ρit
∂rik,t

. H i
t = ( 1

ui0,t
)[∇ri,riu

i
t −

ρit∇ri,0u
i
t]. We can then write the dynamics of prices under the local Marshallian equilibrium

model as

dqt
dt

=
1∑
ci

∑
a(ci)2H i

t(ρ
i
t − qt). (3)

One of the interesting features of this finding is that it is consistent with the normative

analysis of Saari and Simon (1978) in which they showed it was necessary for an equilibrating

mechanism to use information about the Hessian ∇xxu
i in order to be stable. H i does this

here.
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Appendix C.3. Theorem 2 proof

Theorem 2: (Convergence to Pareto Optimality)

Let xt = (st, rt). If (i) there are no income effects, i.e., ui0(xi) = 1 for all i and all xi ∈ X,

and (ii) xit > 0 for all t, then for the dynamics in (13) and (14), (xt, pt)→ (x∗, p∗) where x∗

is Pareto-optimal and e(p∗, x∗) = 0.

Proof: We use
∑
ciui as a Lyapunov function. Let κi = ci(ρi − q). Then we can write

d(
∑
ciui)/dt =

∑
ci du

i

dt
=
∑
ci(ρi− q)dr

i
t

dt
= α[(

∑
κiκi)− (1/I)(

∑
κi)(

∑
κi). By the triangle

inequality, (1/I)
∑
||κi||2 ≥ (1/I)||

∑
κi||2. So

∑
||κi||2 > (1/I)||

∑
κi||2 if κi 6= 0 for some

i. Therefore, d(
∑
ciui)/dt > 0 unless κi = 0 for all i which is true iff ρi = q for all i.

Appendix C.4. Proof of Equation (21)

Applying the version of the Marshallian Local Theory where bid adjustment is as fast as

price adjustment (Section IV.B.1) to the CAPM economy, we get

dqt
dt

= (
α∑
ci

)
∑

(ciai)2Ω2ei(qt, r
i
t). (4)

From Equation (3), we know that dqt
dt

= ( 1∑
ci

)
∑
α(ci)2H i(ρit − qt). From (16), ρit − qt =

µ− qt− aiΩrit. From (17), aiΩei = µ− qt− aiΩrit. Therefore, qt
dt

= ( α∑
ci

)
∑

(ci)2H iaiΩeit. But

H i = aiΩ. From here the above equation directly follows.
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Table I

Experimental Design Data.

Exp.a Subject aib Signup Endowments Cash Loan Exchange
Cat. Reward A B Notes Repaymentc Rate
(#)d (×10−3) (franc) (franc) (franc) $/franc

28Nov01 14 2.30 125 2 8 0 400 2340 0.06
14 0.28 125 8 2 0 400 2480 0.06
14 0.15 125 2 8 0 400 2365 0.06

20Mar02 10 2.30 125 2 8 0 400 2320 0.06
10 0.28 125 8 2 0 400 2470 0.06
10 0.15 125 2 8 0 400 2370 0.06

24Apr02 14 2.30 125 2 8 0 400 2320 0.06
13 0.28 125 8 2 0 400 2470 0.06
13 0.15 125 2 8 0 400 2370 0.06

28 May02 13 2.30 125 2 8 0 400 2320 0.06
12 0.28 125 8 2 0 400 2470 0.06
12 0.15 125 2 8 0 400 2370 0.06

Footnotes to Table I.

a Date of experiment.

b Coefficient ai in the payoff function (15).

c Coefficient Ln in the payoff function (15).

d Number per subject type.
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Table II

Projections Of Transaction Price Changes Onto Weighted Sum Of Walrasian
Excess Demands

Exp. Periods Signa Security Coefficientsb R2 F -statisticc Id ρe

Intercept Excess Demand
A B

28Nov01 1-4 − A 0.1 20.7 -6.5 0.05 27.0 1138 −0.12∗∗

(0.0) (2.8) (0.9) (< .01)
B -0.0 -1.4 1.5 0.06 33.6 1138 -0.06

(0.0) (1.8) (0.6) (< .01)
5-8 + A 0.6 20.0 5.4 0.05 31.3 1224 −0.30∗∗

(0.1) (2.8) (0.9) (< .01)
B -0.1 0.5 1.2 0.05 30.3 1224 0.03

(0.1) (1.7) (0.5) (< .01)

20Mar02 1-4 + A 0.6 18.8 5.4 0.04 12.8 668 -0.02
(0.1) (3.7) (1.1) (< .01)

B -0.5 -5.9 1.8 0.12 45.5 668 0.04
(0.2) (4.6) (1.4) (< .01)

5-8 − A -0.3 32.1 -8.1 0.06 16.6 491 -0.07
(0.1) (7.3) (2.5) (< .01)

B -0.0 -7.0 6.2 0.16 48.1 491 0.08
(0.1) (5.0) (1.7) (< .01)
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Table II

Projections Of Transaction Price Changes Onto Weighted Sum Of Walrasian
Excess Demands (Continued)

Exp. Periods Signa Security Coefficientsb R2 F -statisticc Id ρe

Intercept Excess Demand
A B

24Apr02 1-4 + A 1.3 33.6 10.1 0.07 26.5 745 −0.03
(0.2) (4.6) (1.4) (< .01)

B -0.3 -2.2 0.5 0.07 25.9 745 0.06
(0.1) (3.0) (0.9) (< .01)

5-8 − A -0.3 17.4 -5.2 0.04 14.4 675 -0.04
(0.1) (5.2) (1.9) (< .01)

B 0.1 -31.9 12.6 0.14 52.6 675 -0.07
(0.1) (3.6) (1.3) (< .01)

28May02 1-4 + A 0.6 18.8 4.9 0.04 18.4 825 0.04
(0.2) (3.7) (1.2) (< .01)

B -0.8 10.5 6.9 0.16 76.5 825 0.04
(0.2) (3.5) (1.1) (< .01)

5-8 − A -0.1 9.0 -2.9 0.02 4.3 563 −0.14∗∗

(0.1) (3.1) (1.1) (0.01)
B -0.1 -9.3 4.6 0.08 23.6 563 0.01

(0.1) (3.4) (1.2) (< .01)

Footnotes to Table II.
a Sign of the off-diagonal element of the matrix Ω. The OLS coefficient matrix evidently inherits
the structure of this matrix.
b OLS projections of transaction price changes onto (i) an intercept, (ii) the weighted sum
of Walrasian excess demands for the two risky securities (A and B). Each individual excess
demand is weighted by the coefficient ai. Time advances whenever one of the three assets
trades. Boldfaced coefficients are significant at the 1% level using a one-sided test (effect of
own excess demand is positive; cross-effect has the same sign as the corresponding covariance).
Standard errors in parentheses.
c p-level in parentheses.
d Number of observations.
e Autocorrelation of the error term; ∗ and ∗∗ indicate significance at the 5% and 1% level,

respectively.
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Table III

Mean Absolute Deviations Of Individual Portfolio Weights From
Market Portfolio Weights

Experiment Periods Signa Period
1 or 5 2 or 6 3 or 7 4 or 8

28Nov01 1-4 − 0.15b 0.14 0.12 0.12
(0.02)c (0.02) (0.02) (0.02)

5-8 + 0.24 0.25 0.23 0.26
(0.03) (0.03) (0.03) (0.03)

20Mar02 1-4 + 0.24 0.26 0.24 0.25
(0.03) (0.03) (0.03) (0.03)

5-8 − 0.13 0.11 0.13 0.11
(0.02) (0.02) (0.03) (0.02)

24Apr02 1-4 + 0.25 0.26 0.25 0.25
(0.02) (0.02) (0.02) (0.03)

5-8 − 0.17 0.12 0.10 0.09
(0.02) (0.01) (0.01) (0.01)

28May02 1-4 + 0.24 0.27 0.22 0.22
(0.03) (0.02) (0.02) (0.03)

5-8 − 0.17 0.15 0.10 0.10
(0.02) (0.02) (0.02) (0.02)

Footnotes to Table III.
a Sign of the off-diagonal element of the matrix Ω. The mean absolute deviation
of final holdings from per-capita average holdings is significantly larger when
this sign is positive.
b Average absolute difference between (i) the proportion individuals invest
in A relative to total franc investment in securities A and B, and (ii) the
corresponding weight in the per-capita holdings of A; weights are computed
on the basis of end-of-period prices and holdings.
c Standard error in parentheses.
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Figure 1. Evolution of transaction prices of securities A [dashed line] and B [dash-dotted line].
Horizontal lines indicate equilibrium price levels [A: solid line; B: dotted line]. Time (in seconds)
on horizontal axis; prices (in francs) on vertical axis. Vertical lines delineate periods.
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Figure 2. Evolution of (i) distance of the RAWE (weighted average holding) portfolio from (mean-
variance) optimality [dotted line; distance based on Sharpe ratios]; (ii) distance of prices from
Walrasian equilibrium [solid line; distance based on the value of the Market portfolio]. Differences
are scaled so that maximum difference in an experiment = 1. Time (in seconds) on horizontal axis;
difference on vertical axis. Vertical lines delineate periods.
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